Analysis of p-Adic Numbers

Matt McBride

University of Oklahoma

March 8, 2013
Setup

- p any prime, $p = 2, 3, 5, \ldots$, $\gamma \in \mathbb{Z}, \mathbb{Q}$, let \mathbb{Z}_+ be the natural numbers. If K is a field, then K^\times is the multiplicative group.
Setup

- **p** any prime, $p = 2, 3, 5, \ldots$, $\gamma \in \mathbb{Z}, \mathbb{Q}$, let \mathbb{Z}_+^* be the natural numbers
- If K is a field, then K^\times is the multiplicative group

Let $x \in \mathbb{Q}$, $x \neq 0$, then

$$x = \pm p^\gamma \frac{a}{b},$$

for $\gamma \in \mathbb{Z}$, $a, b \in \mathbb{Z}_+$, with a, b not divisible by p and $\gcd(a, b) = 1$
Setup

- \(p \) any prime, \(p = 2, 3, 5, \ldots \), \(\gamma \in \mathbb{Z}, \mathbb{Q} \), let \(\mathbb{Z}_+ \) be the natural numbers
 - \(K \) is a field, then \(K^\times \) is the multiplicative group

- Let \(x \in \mathbb{Q}, x \neq 0 \), then
 \[
 x = \pm p^{\gamma \frac{a}{b}},
 \]

 for \(\gamma \in \mathbb{Z}, a, b \in \mathbb{Z}_+ \), with \(a, b \) not divisible by \(p \) and \(\gcd(a, b) = 1 \)

- \(p \)-adic norm: \(|x|_p \) of \(x \in \mathbb{Q} \) is \(|x|_p = p^{-\gamma} \) for \(x \neq 0 \), \(|0|_p := 0 \)
Setup

- **p** any prime, \(p = 2, 3, 5, \ldots \), \(\gamma \in \mathbb{Z}, \mathbb{Q} \), let \(\mathbb{Z}_+ \) be the natural numbers if \(\mathbb{K} \) is a field, then \(\mathbb{K}^\times \) is the multiplicative group
- Let \(x \in \mathbb{Q}, x \neq 0 \), then
 \[
x = \pm p^{\gamma} \frac{a}{b},
 \]
 for \(\gamma \in \mathbb{Z}, a, b \in \mathbb{Z}_+ \), with \(a, b \) not divisible by \(p \) and \(\gcd(a, b) = 1 \)
- **p**-adic norm: \(|x|_p \) of \(x \in \mathbb{Q} \) is \(|x|_p = p^{-\gamma} \) for \(x \neq 0 \), \(|0|_p := 0 \)
- \(\mathbb{Q}_p \): field of \(p \)-adic numbers, is the completion of the field \(\mathbb{Q} \) w.r.t. the norm \(| \cdot |_p\)
Every nonzero p-adic number, can be written as

$$x = \sum_{i=0}^{\infty} x_i p^i,$$

where $x_i = 0, 1, 2, \ldots, p - 1$, $x_0 \neq 0$.
Every nonzero p-adic number, can be written as

$$x = \sum_{i=0}^{\infty} x_i p^i,$$

where $x_i = 0, 1, 2, \ldots, p - 1, x_0 \neq 0$

$-\gamma$ is called the order of x and denoted $\text{ord } x = -\gamma$ and $\text{ord } 0 := -\infty$
Facts and Examples II

- In 2-adic:
Facts and Examples II

- In 2-adic:
- $35 = 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$
In 2-adic:

\[35 = 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 \]

\[\frac{1}{3} = \sum_{n=0}^{\infty} 1 \cdot 2^n = \{1, 1, 1, 1, 1, \ldots\}_2 \]
Facts and Examples II

- In 2-adic:
- \(35 = 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0\)

\[
\frac{1}{3} = \sum_{n=0}^{\infty} 1 \cdot 2^n = \{1, 1, 1, 1, 1, \ldots\}
\]

- \(|4|_2 = 4^{-1}, \quad |1/4|_2 = 4, \quad |1/3|_2 = 1\)
In 2-adic:

$35 = 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$

$\frac{1}{3} = \sum_{n=0}^{\infty} 1 \cdot 2^n = \{1, 1, 1, 1, 1, \ldots\}_2$

$|4|_2 = 4^{-1}, \quad |1/4|_2 = 4, \quad |1/3|_2 = 1$

If x a nonzero integer, then

$x = \sum_{i=0}^{n} x_ip^i$
Norm Properties

1.) \(|x|_p \geq 0\), 2.) \(|xy|_p \leq |x|_p |y|_p\)
Norm Properties

1.) $|x|_p \geq 0$, 2.) $|xy|_p \leq |x|_p|y|_p$
3.) $|x + y|_p \leq \max (|x|_p, |y|_p)$, moreover
Norm Properties

1.) \(|x|_p \geq 0\), 2.) \(|xy|_p \leq |x|_p |y|_p\)
3.) \(|x + y|_p \leq \max\left(|x|_p, |y|_p\right)\), moreover
\(|x + y|_p = \max\left(|x|_p, |y|_p\right)\) iff \(|x|_p \neq |y|_p\)
Norm Properties

- 1.) \(|x|_p \geq 0\), 2.) \(|xy|_p \leq |x|_p |y|_p\)
- 3.) \(|x + y|_p \leq \max(|x|_p, |y|_p)\), moreover

\(|x + y|_p = \max(|x|_p, |y|_p)\) iff \(|x|_p \neq |y|_p\)

\(|x + y|_p < |2x|_p\) iff \(|x|_p = |y|_p\)
Norm Properties

1. \(|x|_p \geq 0\), 2. \(|xy|_p \leq |x|_p |y|_p\)
3. \(|x + y|_p \leq \max(|x|_p, |y|_p)\), moreover

\(|x + y|_p = \max(|x|_p, |y|_p)\) iff \(|x|_p \neq |y|_p\)

\(|x + y|_p < 2|x|_p\) iff \(|x|_p = |y|_p\)

Means the norm in \(\mathbb{Q}_p\) is an ultrametric
Topology of \mathbb{Q}_p

- $B_\gamma(a) = \{x \in \mathbb{Q}_p : |x - a|_p \leq p^\gamma\}$ - disk with center a and radius p^γ
Topology of \mathbb{Q}_p

- $B_\gamma(a) = \{ x \in \mathbb{Q}_p : |x - a|_p \leq p^\gamma \}$ - disk with center a and radius p^γ
- $S_\gamma(a) = \{ x \in \mathbb{Q}_p : |x - a|_p = p^\gamma \}$ - circle with center a and radius p^γ
Topology of \mathbb{Q}_p

- $B_\gamma(a) = \{x \in \mathbb{Q}_p : |x - a|_p \leq p^\gamma\}$ -disk with center a and radius p^γ
- $S_\gamma(a) = \{x \in \mathbb{Q}_p : |x - a|_p = p^\gamma\}$ -circle with center a and radius p^γ
- Have the following relations:

$$B_\gamma(a) = \bigcup_{\gamma' \leq \gamma} S_{\gamma'}(a), \quad S_\gamma(a) = B_\gamma(a) \setminus B_{\gamma-1}(a)$$

$$\mathbb{Q}_p = \bigcup_{\gamma \in \mathbb{Z}} B_\gamma(a), \quad \mathbb{Q}_p^\times = \bigcup_{\gamma \in \mathbb{Z}} S_\gamma(a)$$
Fun facts about the space \mathbb{Q}_p

- All triangles are isoceles
Fun facts about the space \mathbb{Q}_p

- All triangles are isoceles
- Every point in a disk is its center
Fun facts about the space \mathbb{Q}_p

- All triangles are isosceles
- Every point in a disk is its center
- A disk has no boundary
Fun facts about the space \mathbb{Q}_p

- All triangles are isoceles
- Every point in a disk is its center
- A disk has no boundary
- A disk is a finite union of disjoint disks of smaller radii
Fun facts about the space \mathbb{Q}_p

- All triangles are isoceles
- Every point in a disk is its center
- A disk has no boundary
- A disk is a finite union of disjoint disks of smaller radii
- If $x \in B_\gamma(a), B_\gamma'(b)$, then $B_\gamma(a) \subset B_\gamma'(b)$ or $B_\gamma'(b) \subset B_\gamma(a)$
Fun facts about the space \mathbb{Q}_p

- All triangles are isoceles
- Every point in a disk is its center
- A disk has no boundary
- A disk is a finite union of disjoint disks of smaller radii
- If $x \in B_\gamma(a), B_\gamma'(b)$, then $B_\gamma(a) \subset B_\gamma'(b)$ or $B_\gamma'(b) \subset B_\gamma(a)$
- A disk is open and compact
Some Calculus of \mathbb{Q}_p

- Let $Z_p = B_0$ (ring of p-adic integers)
Some Calculus of \mathbb{Q}_p

- Let $Z_p = B_0$ (ring of p-adic integers)
- Normally have dx in regular calculus, here we have $d_p x$.

\[
\int_{Z_p} d_p x = 1,
\int_{B_0} d_p x = p^\gamma,
\int_{S^\infty} d_p x = \left(1 - \frac{1}{p^\alpha}\right)p^\gamma,
\int_{\mathbb{Q}_p} f(x) d_p x = \sum_{\gamma = -\infty}^{\infty} \int_{\mathbb{S}_\gamma} f(x) d_p x,
\int_{B_0} |x|_p^{\alpha - 1} d_p x = 1 - \frac{1}{p^\alpha}.
\]
Some Calculus of \mathbb{Q}_p

- Let $Z_p = B_0$ (ring of p-adic integers)
- Normally have dx in regular calculus, here we have $d_p x$.
- $d_p x$ has the following properties:
Some Calculus of \mathbb{Q}_p

- Let $Z_p = B_0$ (ring of p-adic integers)
- Normally have dx in regular calculus, here we have $d_p x$.
- $d_p x$ has the following properties:
 1. $d_p (x + a) = d_p x$ for $a \in \mathbb{Q}_p$, 2. $d_p (ax) = |a|_p d_p x$ for $a \in \mathbb{Q}_p^\times$
The \(p \)-Adic Numbers

Some Analysis of \(p \)-adic numbers

Possible Research Problems

References

Some Calculus of \(\mathbb{Q}_p \)

- Let \(\mathbb{Z}_p = B_0 \) (ring of \(p \)-adic integers)
- Normally have \(dx \) in regular calculus, here we have \(d_p x \).
- \(d_p x \) has the following properties:
 1. \(d_p(x + a) = d_p x \) for \(a \in \mathbb{Q}_p \)
 2. \(d_p(ax) = |a|_p d_p x \) for \(a \in \mathbb{Q}_p^\times \)
- We have the following integrals:
 \[
 \int_{\mathbb{Z}_p} d_p x = 1, \quad \int_{B_\gamma} d_p x = p^\gamma, \quad \int_{S_\gamma} d_p x = \left(1 - \frac{1}{p}\right) p^\gamma
 \]
 \[
 \int_{\mathbb{Q}_p} f(x) d_p x = \sum_{\gamma = -\infty}^{\infty} \int_{S_\gamma} f(x) d_p x, \quad \int_{B_\gamma} |x|_p^{\alpha - 1} = \frac{1 - p^{-1}}{1 - p^{-\alpha}} p^{\alpha \gamma}, \alpha > 0
 \]
Differential Operators

Let L be a differential operator, we can just think $L = \frac{d}{dx}$, and let Ω be some domain.
Differential Operators

- Let L be a differential operator, we can just think $L = \frac{d}{dx}$, and let Ω be some domain.

- Given functions f and g, one can ask the following type of problem:
Differential Operators

- Let L be a differential operator, we can just think $L = \frac{d}{dx}$, and let Ω be some domain.
- Given functions f and g, one can ask the following type of problem:

\[
\begin{aligned}
&Lu = f \text{ in } \Omega \\
&u|_{\partial \Omega} = g \text{ on } \partial \Omega
\end{aligned}
\]
Differential Operators

- Let L be a differential operator, we can just think $L = \frac{d}{dx}$, and let Ω be some domain.
- Given functions f and g, one can ask the following type of problem:

\[
\begin{align*}
Lu &= f \text{ in } \Omega \\
\left. u \right|_{\partial \Omega} &= g \text{ on } \partial \Omega
\end{align*}
\]

- The goal is to find functions u that satisfy this type of boundary value problem.
Another way to rephrase the goal, is one wants to find, if possible, L^{-1} or $(L - \lambda)^{-1}$ for complex numbers λ.

This has been studied very extensively classically, meaning when $L = \frac{d}{dx}$ or $L = a_n(x) \frac{d^n}{dx^n} + \cdots + a_1(x) \frac{d}{dx} + a_0(x)$, or L involve partial derivatives etc. These types of questions will lead to problems in ODEs or PDEs. Current research still goes on in this type of question.
Another way to rephrase the goal, is one wants to find, if possible, \(L^{-1} \) or \((L - \lambda)^{-1} \) for complex numbers \(\lambda \).

This has been studied very extensively classically, meaning when \(L = \frac{d}{dx} \) or

\[
L = a_n(x) \frac{d^n}{dx^n} + \cdots + a_1(x) \frac{d}{dx} + a_0(x),
\]

or \(L \) involve partial derivatives etc.
Another way to rephrase the goal, is one wants to find, if possible, L^{-1} or $(L - \lambda)^{-1}$ for complex numbers λ.

This has been studied very extensively classically, meaning when $L = \frac{d}{dx}$ or

$$L = a_n(x) \frac{d^n}{dx^n} + \cdots + a_1(x) \frac{d}{dx} + a_0(x),$$

or L involve partial derivatives etc.

These types of questions will lead to problems in ODEs or PDEs. Current research still goes on in this type of question.
Relation to p-adic Analysis

- We can ask the same type of question here, though the setup looks vastly different.
We can ask the same type of question here, though the setup looks vastly different.

The domain Ω are now the p-adic trees.
Relation to p-adic Analysis

- We can ask the same type of question here, though the setup looks vastly different.
- The domain Ω are now the p-adic trees
- There is a correspondence to the p-adic numbers and the p-adic trees
Relation to p-adic Analysis

- We can ask the same type of question here, though the setup looks vastly different.
- The domain Ω are now the p-adic trees
- There is a correspondence to the p-adic numbers and the p-adic trees
- The boundary of Ω, $\partial \Omega$ becomes Cantor Sets!
Relation to p-adic Analysis

- We can ask the same type of question here, though the setup looks vastly different.
- The domain Ω are now the p-adic trees
- There is a correspondence to the p-adic numbers and the p-adic trees
- The boundary of Ω, $\partial\Omega$ becomes Cantor Sets!
- Now L becomes some kind of difference of the vertices and edges making it seem like the problem becomes a discrete problem.
Relation to p-adic Analysis

- We can ask the same type of question here, though the setup looks vastly different.
- The domain Ω are now the p-adic trees
- There is a correspondence to the p-adic numbers and the p-adic trees
- The boundary of Ω, $\partial \Omega$ becomes Cantor Sets!
- Now L becomes some kind of difference of the vertices and edges making it seem like the problem becomes a discrete problem.
- Now one has to study function spaces of sequences and series that relate to \mathbb{Q}_p
References

The End

Thank You