Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let $f(x)=x^{3}+3 \sin x+2 \cos x$. Compute $\left(f^{-1}\right)^{\prime}(2)$.
2. Suppose f^{-1} is the inverse function of a differentiable function f and let $g(x)=\frac{1}{f^{-1}(x)}$. If $f(3)=2$ and $f^{\prime}(3)=\frac{1}{9}$, compute $g^{\prime}(2)$.
3. Use logarithmic differentiation to compute the derivative of $y=x^{\sin x}$.
4. Use logarithmic differentiation to compute the derivative of $y=(\sin x)^{\ln x}$.
5. Evaluate the following integral:

$$
\int \frac{1+x}{1+x^{2}} d x
$$

6. Evaluate the following integral:

$$
\int \frac{d x}{\sin ^{-1}(x) \sqrt{1-x^{2}}}
$$

7. Evaluate the following limit:

$$
\lim _{x \rightarrow 0^{+}} x^{\sqrt{x}}
$$

8. Evaluate the following limit:

$$
\lim _{x \rightarrow \infty} x^{1 / x}
$$

9. Evaluate the following integral:

$$
\int e^{\sqrt{x}} d x
$$

10. Evaluate the following integral:

$$
\int x \ln (x+1) d x
$$

11. Evaluate the following integral:

$$
\int \sin ^{3} \theta \cos ^{4} \theta d \theta
$$

12. Evaluate the following integral:

$$
\int_{0}^{\pi / 2} \sin ^{2} x \cos ^{2} x d x
$$

13. Suppose f is a differentiable function with continuous derivative on $[a, b]$. Show that

$$
\int f(x) d x=x f(x)-\int x f^{\prime}(x) d x
$$

In addition if f has an inverse with $g=f^{-1}$, show that

$$
\int_{a}^{b} f(x) d x=b f(b)-a f(a)-\int_{f(a)}^{f(b)} g(y) d y
$$

