Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Evaluate the following integral:

$$\int \frac{\sqrt{x^2 - 1}}{x^4} \, dx \; .$$

2. Evaluate the following integral:

$$\int \frac{x^2}{\sqrt{9-x^2}} \, dx \; .$$

3. Evaluate the following integral:

$$\int_0^1 \frac{2}{2x^2 + 3x + 1} \, dx \, dx$$

4. Evaluate the following integral:

$$\int_{-1}^{0} \frac{x^3 - 4x + 1}{x^2 - 3x + 2} \, dx \; .$$

5. Determine if the following improper integral converges or diverges. If it converges, evaluate it.

$$\int_0^\infty e^{-\sqrt{x}} \, dx \; .$$

6. Determine if the following improper integral converges or diverges. If it converges, evaluate it. $t^{\infty} = 1$

$$\int_e^\infty \frac{1}{x(\ln x)^2} \ dx \ .$$

7. Determine if the following improper integral converges or diverges. If it converges, evaluate it.

$$\int_0^1 \frac{dx}{\sqrt{1-x^2}}$$

8. Determine if the following improper integral converges or diverges. If it converges, evaluate it.

$$\int_0^5 \frac{x}{x-2} \, dx \; .$$

9. Find the exact length of the following curve $y = \ln(\cos x), 0 \le x \le \pi/3$.

10. Find the exact length of the following curve $y = \sqrt{x - x^2} + \sin^{-1}(\sqrt{x})$.

11. Find the exact area of the surface obtained by rotating $y^2 = x + 1$ and $0 \le x \le 3$ about the x-axis.

12. Find the exact area of the surface obtained by rotating $y = \sqrt{1 + e^x}$ and $0 \le x \le 1$ about the x-axis.

13. Define the following region:

$$\mathcal{R} = \left\{ (x, y) : 1 \le y \le \frac{1}{x} \right\} \; .$$

Show that the solid obtained by rotating \mathcal{R} about the *x*-axis has finite volume and that it has infinite surface area.