\qquad

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Evaluate the following integral:

$$
\int \frac{\sqrt{x^{2}-1}}{x^{4}} d x
$$

2. Evaluate the following integral:

$$
\int \frac{x^{2}}{\sqrt{9-x^{2}}} d x
$$

3. Evaluate the following integral:

$$
\int_{0}^{1} \frac{2}{2 x^{2}+3 x+1} d x
$$

4. Evaluate the following integral:

$$
\int_{-1}^{0} \frac{x^{3}-4 x+1}{x^{2}-3 x+2} d x
$$

5. Determine if the following improper integral converges or diverges. If it converges, evaluate it.

$$
\int_{0}^{\infty} e^{-\sqrt{x}} d x
$$

6. Determine if the following improper integral converges or diverges. If it converges, evaluate it.

$$
\int_{e}^{\infty} \frac{1}{x(\ln x)^{2}} d x
$$

7. Determine if the following improper integral converges or diverges. If it converges, evaluate it.

$$
\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}
$$

8. Determine if the following improper integral converges or diverges. If it converges, evaluate it.

$$
\int_{0}^{5} \frac{x}{x-2} d x
$$

9. Find the exact length of the following curve $y=\ln (\cos x), 0 \leq x \leq \pi / 3$.
10. Find the exact length of the following curve $y=\sqrt{x-x^{2}}+\sin ^{-1}(\sqrt{x})$.
11. Find the exact area of the surface obtained by rotating $y^{2}=x+1$ and $0 \leq x \leq 3$ about the x-axis.
12. Find the exact area of the surface obtained by rotating $y=\sqrt{1+e^{x}}$ and $0 \leq x \leq 1$ about the x-axis.
13. Define the following region:

$$
\mathcal{R}=\left\{(x, y): 1 \leq y \leq \frac{1}{x}\right\}
$$

Show that the solid obtained by rotating \mathcal{R} about the x-axis has finite volume and that it has infinite surface area.

