D-bar Operators in Commutative and Noncommutative Domains

Matt McBride

University of Oklahoma

October 19, 2013

Introduction and Relavent Papers

- Atiyah, M. F., Patodi, V. K. and Singer I. M., Spectral asymmetry and Riemannian geometry I. Math. Proc. Camb. Phil. Soc., 77, 43-69, 1975.

Introduction and Relavent Papers

- Atiyah, M. F., Patodi, V. K. and Singer I. M., Spectral asymmetry and Riemannian geometry I. Math. Proc. Camb. Phil. Soc., 77, 43-69, 1975.
- Carey, A. L., Klimek, S. and Wojciechowski, K. P., Dirac operators on noncommutative manifolds with boundary, Lett. Math. Phys. 93, 107 - 125, 2010.

Commutative Disk and Annulus

Spaces and Operator

- Let $\mathbb{D}_{w^{+}}=\left\{z \in \mathbb{C}:|z| \leq w^{+}\right\}$and $\mathbb{A}_{w^{-}, w^{+}}=\left\{z \in \mathbb{C}: 0<w^{-} \leq|z| \leq w^{+}\right\}$.

Spaces and Operator

- Let $\mathbb{D}_{w^{+}}=\left\{z \in \mathbb{C}:|z| \leq w^{+}\right\}$and $\mathbb{A}_{w^{-}, w^{+}}=\left\{z \in \mathbb{C}: 0<w^{-} \leq|z| \leq w^{+}\right\}$.
- Notice $\partial \mathbb{D}_{w^{+}} \cong S^{1}$ and $\partial \mathbb{A}_{w^{-}, w^{+}} \cong S^{1} \cup S^{1}$.

Spaces and Operator

- Let $\mathbb{D}_{w^{+}}=\left\{z \in \mathbb{C}:|z| \leq w^{+}\right\}$and $\mathbb{A}_{w^{-}, w^{+}}=\left\{z \in \mathbb{C}: 0<w^{-} \leq|z| \leq w^{+}\right\}$.
- Notice $\partial \mathbb{D}_{w^{+}} \cong S^{1}$ and $\partial \mathbb{A}_{w^{-}, w^{+}} \cong S^{1} \cup S^{1}$.
- Let

$$
D=\frac{\partial}{\partial \bar{z}}
$$

be the operator acting on the space of H^{1} functions.

Two Short Exact Sequences

- Let $\sigma f(\varphi)=f\left(w^{+} e^{i \varphi}\right)$ for $z=r e^{i \varphi}$.

Two Short Exact Sequences

- Let $\sigma f(\varphi)=f\left(w^{+} e^{i \varphi}\right)$ for $z=r e^{i \varphi}$.

$$
0 \rightarrow C_{0}\left(\mathbb{D}_{w^{+}}\right) \rightarrow C\left(\mathbb{D}_{w^{+}}\right) \xrightarrow{\sigma} C\left(S^{1}\right) \rightarrow 0
$$

Two Short Exact Sequences

- Let $\sigma f(\varphi)=f\left(w^{+} e^{i \varphi}\right)$ for $z=r e^{i \varphi}$.

$$
0 \rightarrow C_{0}\left(\mathbb{D}_{w^{+}}\right) \rightarrow C\left(\mathbb{D}_{w^{+}}\right) \xrightarrow{\sigma} C\left(S^{1}\right) \rightarrow 0
$$

- Let $\sigma_{ \pm} f(\varphi)=f\left(w^{ \pm} e^{i \varphi}\right)$.

Two Short Exact Sequences

- Let $\sigma f(\varphi)=f\left(w^{+} e^{i \varphi}\right)$ for $z=r e^{i \varphi}$.

$$
0 \rightarrow C_{0}\left(\mathbb{D}_{w^{+}}\right) \rightarrow C\left(\mathbb{D}_{w^{+}}\right) \xrightarrow{\sigma} C\left(S^{1}\right) \rightarrow 0
$$

- Let $\sigma_{ \pm} f(\varphi)=f\left(w^{ \pm} e^{i \varphi}\right)$.

$$
0 \rightarrow C_{0}\left(\mathbb{A}_{w^{-}, w^{+}}\right) \rightarrow C\left(\mathbb{A}_{w^{-}, w^{+}}\right) \xrightarrow{\sigma_{+} \oplus \sigma_{-}} C\left(S^{1}\right) \oplus C\left(S^{1}\right) \rightarrow 0
$$

APS Setup

- Let M be a closed manifold with boundary Y and let D be a Dirac operator defined on M.

APS Setup

- Let M be a closed manifold with boundary Y and let D be a Dirac operator defined on M.
- Let M have a "product" structure near the boundary so that an infinite cylinder can be attached.

APS Setup

- Let M be a closed manifold with boundary Y and let D be a Dirac operator defined on M.
- Let M have a "product" structure near the boundary so that an infinite cylinder can be attached.
- Let D have a "special" decomposition structure so that it extends naturally to the infinite cylinder.

APS Boundary Condition

Study D with domain:

- $F \in H^{1}(M)$

APS Boundary Condition

Study D with domain:

- $F \in H^{1}(M)$
- There is a $F^{\text {ext }} \in H_{\text {loc }}^{1}$ (cylinder) such that $D F^{\text {ext }}=0$, $\left.F^{\text {ext }}\right|_{Y}=\left.F\right|_{Y}$ and $F^{\text {ext }} \in L^{2}$ (cylinder)

Boundary Conditions

- Let $D_{\mathbb{D}}=D$ and $D_{\mathbb{A}}=D$ where

Boundary Conditions

- Let $D_{\mathbb{D}}=D$ and $D_{\mathbb{A}}=D$ where
- $\operatorname{dom}\left(D_{\mathbb{D}}\right)$ consists of $a \in H^{1}\left(\mathbb{D}_{w^{+}}\right)$such that there is $a^{\text {ext }} \in H_{\text {loc }}^{1}\left(\mathbb{C} \backslash \mathbb{D}_{w^{+}}\right)$such that $\left.a^{\text {ext }}\right|_{S^{1}}=\left.a\right|_{S^{1}}, D a^{\text {ext }}=0$, $a^{\text {ext }} \in L^{2}\left(\mathbb{C} \backslash \mathbb{D}_{w^{+}}\right)$

Boundary Conditions

- Let $D_{\mathbb{D}}=D$ and $D_{\mathbb{A}}=D$ where
- $\operatorname{dom}\left(D_{\mathbb{D}}\right)$ consists of $a \in H^{1}\left(\mathbb{D}_{w^{+}}\right)$such that there is $a^{\mathrm{ext}} \in H_{\mathrm{loc}}^{1}\left(\mathbb{C} \backslash \mathbb{D}_{w^{+}}\right)$such that $\left.a^{\mathrm{ext}}\right|_{S^{1}}=\left.a\right|_{S^{1}}, D a^{\mathrm{ext}}=0$, $a^{\text {ext }} \in L^{2}\left(\mathbb{C} \backslash \mathbb{D}_{w^{+}}\right)$
- and $\operatorname{dom}\left(D_{\mathbb{A}}\right)$ consists of $a \in H^{1}\left(\mathbb{A}_{w^{-}, w^{+}}\right)$such that there is $a^{\text {ext }} \in H_{\mathrm{loc}}^{1}\left(\mathbb{C} \backslash \mathbb{A}_{w^{-}, w^{+}}\right)$such that $\left.a^{\text {ext }}\right|_{S^{1} \cup S^{1}}=\left.a\right|_{S^{1} \cup S^{1}}$, $D a^{\text {ext }}=0, a^{\text {ext }} \in L^{2}\left(\mathbb{C} \backslash \mathbb{A}_{w^{-}, w^{+}}\right)$.

Boundary Conditions

- Let $D_{\mathbb{D}}=D$ and $D_{\mathbb{A}}=D$ where
- $\operatorname{dom}\left(D_{\mathbb{D}}\right)$ consists of $a \in H^{1}\left(\mathbb{D}_{w^{+}}\right)$such that there is $a^{\mathrm{ext}} \in H_{\mathrm{loc}}^{1}\left(\mathbb{C} \backslash \mathbb{D}_{w^{+}}\right)$such that $\left.a^{\mathrm{ext}}\right|_{S^{1}}=\left.a\right|_{S^{1}}, D a^{\mathrm{ext}}=0$, $a^{\mathrm{ext}} \in L^{2}\left(\mathbb{C} \backslash \mathbb{D}_{w^{+}}\right)$
- and $\operatorname{dom}\left(D_{\mathbb{A}}\right)$ consists of $a \in H^{1}\left(\mathbb{A}_{w^{-}, w^{+}}\right)$such that there is $a^{\text {ext }} \in H_{\text {loc }}^{1}\left(\mathbb{C} \backslash \mathbb{A}_{w^{-}, w^{+}}\right)$such that $\left.a^{\text {ext }}\right|_{S^{1} \cup S^{1}}=\left.a\right|_{S^{1} \cup S^{1}}$, $D a^{\text {ext }}=0, a^{\text {ext }} \in L^{2}\left(\mathbb{C} \backslash \mathbb{A}_{w^{-}, w^{+}}\right)$.
- $D_{\mathbb{D}}$ and $D_{\mathbb{A}}$ have parametrices, i.e. they are almost invertible.

A Fourier Series and Boundary Conditions Equivalence

$$
a=\sum_{n=0}^{\infty} e^{i n \varphi} f_{n}(r)+\sum_{n=1}^{\infty} g_{n}(r) e^{-i n \varphi}
$$

A Fourier Series and Boundary Conditions Equivalence

$$
a=\sum_{n=0}^{\infty} e^{i n \varphi} f_{n}(r)+\sum_{n=1}^{\infty} g_{n}(r) e^{-i n \varphi}
$$

- Let $a \in \operatorname{dom}\left(D_{\mathbb{D}}\right)$, then $f_{n}\left(w^{+}\right)=0$ for $n \geq 0$.

A Fourier Series and Boundary Conditions Equivalence

$$
a=\sum_{n=0}^{\infty} e^{i n \varphi} f_{n}(r)+\sum_{n=1}^{\infty} g_{n}(r) e^{-i n \varphi}
$$

- Let $a \in \operatorname{dom}\left(D_{\mathbb{D}}\right)$, then $f_{n}\left(w^{+}\right)=0$ for $n \geq 0$.
- Let $a \in \operatorname{dom}\left(D_{\mathbb{A}}\right)$, then $f_{n}\left(w^{+}\right)=0$ for $n \geq 0$ and $g_{n}\left(w^{-}\right)=0$ for $n \geq 1$.

Dirac Operator in Polar Form and Parametrix Decomposition

$$
D=\frac{e^{i \varphi}}{2}\left(\frac{\partial}{\partial r}+\frac{i}{r} \frac{\partial}{\partial \varphi}\right)
$$

Dirac Operator in Polar Form and Parametrix Decomposition

$$
\begin{gathered}
D=\frac{e^{i \varphi}}{2}\left(\frac{\partial}{\partial r}+\frac{i}{r} \frac{\partial}{\partial \varphi}\right) \\
Q a=- \\
\sum_{n=0}^{\infty} e^{i n \varphi} \int_{r}^{w^{+}} f_{n+1}(\rho) \frac{r^{n-1}}{\rho^{n}} d \rho \\
+\sum_{n=1}^{\infty} e^{-i n \varphi} \int_{w^{-}}^{r} g_{n-1}(\rho) \frac{\rho^{n-1}}{r^{n}} d \rho
\end{gathered}
$$

Results

Theorem

The operators $D_{\mathbb{D}}$ and $D_{\mathbb{A}}$ are unbounded Fredholm operators. Moreover their respective parametrices $Q_{\mathbb{D}}$ and $Q_{\mathbb{A}}$ are compact operators. This also means these are elliptic boundary value problems.

Quantum Disk

Gelfand-Naimark Theorem

- Let X compact topological space and $C(X)$ the continuous functions on X. Can associate $C(X)$ with X

Gelfand-Naimark Theorem

- Let X compact topological space and $C(X)$ the continuous functions on X. Can associate $C(X)$ with X
- $C(X)$ commutative C^{*}-algebra with unit

Gelfand-Naimark Theorem

- Let X compact topological space and $C(X)$ the continuous functions on X. Can associate $C(X)$ with X
- $C(X)$ commutative C^{*}-algebra with unit
- GN says if \mathcal{A} is a commutative C^{*}-algebra with unit, then there is a X, compact topological space such that $\mathcal{A}=C(X)$

Gelfand-Naimark Theorem

- Let X compact topological space and $C(X)$ the continuous functions on X. Can associate $C(X)$ with X
- $C(X)$ commutative C^{*}-algebra with unit
- GN says if \mathcal{A} is a commutative C^{*}-algebra with unit, then there is a X, compact topological space such that $\mathcal{A}=C(X)$
- We think of a noncommutative (quantum) space as a noncommutative C^{*}-algebra.

Some Weights

- Let $\left\{e_{k}\right\}$ be the canonical basis for $\ell^{2}(\mathbb{N})$.

Some Weights

- Let $\left\{e_{k}\right\}$ be the canonical basis for $\ell^{2}(\mathbb{N})$.
- Define $U_{W} e_{k}=w(k) e_{k+1}$ where $\{w(k)\}_{k \in \mathbb{N}}$ is an increasing sequence of positive real numbers such that

$$
w^{+}:=\lim _{k \rightarrow \infty} w(k)
$$

exists.

The Quantum Disk and a Short Exact Sequence

- Let $C^{*}\left(U_{W}\right)$ be the C^{*}-algebra generated by U_{W}.

The Quantum Disk and a Short Exact Sequence

- Let $C^{*}\left(U_{W}\right)$ be the C^{*}-algebra generated by U_{W}.

$$
0 \rightarrow \mathcal{K} \rightarrow C^{*}\left(U_{W}\right) \xrightarrow{\sigma} C\left(S^{1}\right) \rightarrow 0
$$

The Quantum Disk and a Short Exact Sequence

- Let $C^{*}\left(U_{W}\right)$ be the C^{*}-algebra generated by U_{W}.

$$
0 \rightarrow \mathcal{K} \rightarrow C^{*}\left(U_{W}\right) \xrightarrow{\sigma} C\left(S^{1}\right) \rightarrow 0
$$

- $\sigma(U)=e^{i \varphi}, \sigma\left(U^{*}\right)=e^{-i \varphi}, \sigma($ compact $)=0$

The Quantum Disk and a Short Exact Sequence

- Let $C^{*}\left(U_{W}\right)$ be the C^{*}-algebra generated by U_{W}.

$$
0 \rightarrow \mathcal{K} \rightarrow C^{*}\left(U_{W}\right) \xrightarrow{\sigma} C\left(S^{1}\right) \rightarrow 0
$$

- $\sigma(U)=e^{i \varphi}, \sigma\left(U^{*}\right)=e^{-i \varphi}, \sigma($ compact $)=0$
- This C^{*}-algebra is the quantum disk.

Informal Idea About Noncommutative Spaces

Classical

- $\mathbb{D} \longrightarrow C(\mathbb{D}) C^{*}$-algebra generated by z and \bar{z}

Quantum

- $\mathbb{D}_{q} \longrightarrow C^{*}\left(U_{W}\right)$, generated by unilateral shift

Informal Idea About Noncommutative Spaces

Classical

- $\mathbb{D} \longrightarrow C(\mathbb{D}) C^{*}$-algebra generated by z and \bar{z}
- $\mathbb{A} \longrightarrow C(\mathbb{A}) C^{*}$-algebra generated by z and \bar{z}

Quantum
$-\mathbb{D}_{q} \longrightarrow C^{*}\left(U_{W}\right)$, generated by unilateral shift

- $\mathbb{A}_{q} \longrightarrow C^{*}\left(U_{W}\right)$, generated by bilateral shift

A Formal Series I

- Ke $e_{k}=k e_{k}$, and let $a^{(n)}(k)$ be an inversely summable sequence whose sum goes to zero at $n \rightarrow \infty$.

A Formal Series I

- Ke $e_{k}=k e_{k}$, and let $a^{(n)}(k)$ be an inversely summable sequence whose sum goes to zero at $n \rightarrow \infty$.
- Let $a \in C^{*}\left(U_{W}\right)$ define

$$
a_{\text {series }}:=\sum_{n=0}^{\infty} U^{n} f_{n}(K)+\sum_{n=1}^{\infty} g_{n}(K)\left(U^{*}\right)^{n}
$$

A Formal Series I

- Ke $e_{k}=k e_{k}$, and let $a^{(n)}(k)$ be an inversely summable sequence whose sum goes to zero at $n \rightarrow \infty$.
- Let $a \in C^{*}\left(U_{W}\right)$ define

$$
a_{\text {series }}:=\sum_{n=0}^{\infty} U^{n} f_{n}(K)+\sum_{n=1}^{\infty} g_{n}(K)\left(U^{*}\right)^{n}
$$

- $f_{n}(k)=\left\langle e_{k},\left(U^{*}\right)^{n} a e_{k}\right\rangle, g_{n}(k)=\left\langle e_{k}, a U^{n} e_{k}\right\rangle$

A Formal Series II

$$
\left\|a_{\text {series }}\right\|^{2}=\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \frac{1}{a^{(n)}(k)}\left|f_{n}(k)\right|^{2}+\sum_{k=0}^{\infty} \sum_{n=1}^{\infty} \frac{1}{a^{(n)}(k)}\left|g_{n}(k)\right|^{2}
$$

A Formal Series II

$$
\left\|a_{\text {series }}\right\|^{2}=\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \frac{1}{a^{(n)}(k)}\left|f_{n}(k)\right|^{2}+\sum_{k=0}^{\infty} \sum_{n=1}^{\infty} \frac{1}{a^{(n)}(k)}\left|g_{n}(k)\right|^{2}
$$

- This series looks very similar to the Fourier series for the classical case. Think of k as the discretization of the radial variable r where we divide up the unit interval into infinitely many subintervals so the $1 / a^{(n)}(k)$ appear as the differential term in the integral for the norm.

Hilbert Space

- Let \mathcal{H} be the Hilbert space consisting of the formal series $a_{\text {series }}$ such that $\left\|a_{\text {series }}\right\|$ is finite.

Hilbert Space

- Let \mathcal{H} be the Hilbert space consisting of the formal series $a_{\text {series }}$ such that $\left\|a_{\text {series }}\right\|$ is finite.
- Proposition

If $a \in C^{*}\left(U_{W}\right)$, then $a_{\text {series }}$ converges to a in \mathcal{H} and moreover $C^{*}\left(U_{W}\right)$ is dense in \mathcal{H}.

A Commutator and Trace

- Define $S:=\left[U_{W}^{*}, U_{W}\right]$.

A Commutator and Trace

- Define $S:=\left[U_{W}^{*}, U_{W}\right]$.
- S is hyponormal, injective, and trace class with $\operatorname{tr} S=\left(w^{+}\right)^{2}$.

A Commutator and Trace

- Define $S:=\left[U_{W}^{*}, U_{W}\right]$.
- S is hyponormal, injective, and trace class with $\operatorname{tr} S=\left(w^{+}\right)^{2}$.
- S is also invertible with unbounded inverse.

A Commutator and Trace

- Define $S:=\left[U_{W}^{*}, U_{W}\right]$.
- S is hyponormal, injective, and trace class with $\operatorname{tr} S=\left(w^{+}\right)^{2}$.
- S is also invertible with unbounded inverse.
- Set $a^{(n)}(k)=S^{-1 / 2}(k) S^{-1 / 2}(k+n)$

The Operator

- $D a=S^{-1 / 2}\left[a, U_{W}\right] S^{-1 / 2}$

The Operator

- $D a=S^{-1 / 2}\left[a, U_{W}\right] S^{-1 / 2}$
- $\operatorname{dom}(D)=\{a \in \mathcal{H}: D a \in \mathcal{H}\}$

Boundary Conditions

- Let

$$
a=\sum_{n=0}^{\infty} U^{n} f_{n}(K)+\sum_{n=1}^{\infty} g_{n}(K)\left(U^{*}\right)^{n}
$$

Boundary Conditions

- Let

$$
a=\sum_{n=0}^{\infty} U^{n} f_{n}(K)+\sum_{n=1}^{\infty} g_{n}(K)\left(U^{*}\right)^{n}
$$

- If $a \in \operatorname{dom}(D)$, then $f_{n}(\infty)=0$ for $n \geq 0$.

Boundary Conditions

- Let

$$
a=\sum_{n=0}^{\infty} U^{n} f_{n}(K)+\sum_{n=1}^{\infty} g_{n}(K)\left(U^{*}\right)^{n}
$$

- If $a \in \operatorname{dom}(D)$, then $f_{n}(\infty)=0$ for $n \geq 0$.
- D also has a parametrix Q.

Unbounded Jacobi Operators

$$
\begin{aligned}
& A^{(n)} h(k)=a^{(n)}(k)\left(h(k)-c^{(n)}(k-1) h(k-1)\right) \\
& \bar{A}^{(n)} h(k)=a^{(n+1)}(k)\left(h(k)-c^{(n)}(k) h(k+1)\right)
\end{aligned}
$$

Unbounded Jacobi Operators

$$
\begin{aligned}
& A^{(n)} h(k)=a^{(n)}(k)\left(h(k)-c^{(n)}(k-1) h(k-1)\right) \\
& \bar{A}^{(n)} h(k)=a^{(n+1)}(k)\left(h(k)-c^{(n)}(k) h(k+1)\right)
\end{aligned}
$$

- where $c^{(n)}(k)=w(k) / w(k+n+1)$

Operator Decomposition

$$
\begin{aligned}
D a & =-\sum_{n=0}^{\infty} U^{n+1} \bar{A}^{(n)} W^{(n)} f_{n}(K) \\
& +\sum_{n=1}^{\infty} W^{(n-1)} A^{(n-1)} g_{n}(K)\left(U^{*}\right)^{n-1}
\end{aligned}
$$

The Parametrix

$$
\begin{aligned}
& Q a= \\
& -\sum_{m=0}^{\infty} U^{n}\left(\sum_{i=k}^{\infty} \prod_{j=1}^{n} \frac{w(k+j)}{w(i+j)} \cdot \frac{S^{1 / 2}(i) S^{1 / 2}(i+n+1)}{w(k+n)} f_{n+1}(i)\right) \\
& +\sum_{n=1}^{\infty}\left(\sum_{i=0}^{k} \prod_{j=0}^{n-1} \frac{w(i+j)}{w(k+j)} \cdot \frac{S^{1 / 2}(i) S^{1 / 2}(i+n-1)}{w(i+n-1)} g_{n-1}(i)\right)\left(U^{*}\right)^{n}
\end{aligned}
$$

Results

Theorem
The operator D is an unbounded Fredholm operator. Moreover it's parametrix Q is a compact operator and hence this is an elliptic boundary value problem.

Bibliography

囯 Atiyah, M. F., Patodi, V. K. and Singer I. M., Spectral asymmetry and Riemannian geometry I. Math. Proc. Camb. Phil. Soc., 77, 43-69, 1975.
圊 Klimek, S. and McBride, M., D-bar Operators on Quantum Domains. Math. Phys. Anal. Geom., 13, 357-390, 2010.

The End

Thank You

