Analysis of p-Adic Numbers

Matt McBride

University of Oklahoma
March 8, 2013

Setup

- p any prime, $p=2,3,5, \ldots, \gamma \in \mathbb{Z}, \mathbb{Q}$, let \mathbb{Z}_{+}be the natural numbers If \mathbb{K} is a field, then \mathbb{K}^{\times}is the multiplicative group

Setup

- p any prime, $p=2,3,5, \ldots, \gamma \in \mathbb{Z}, \mathbb{Q}$, let \mathbb{Z}_{+}be the natural numbers If \mathbb{K} is a field, then \mathbb{K}^{\times}is the multiplicative group
- Let $x \in \mathbb{Q}, x \neq 0$, then

$$
x= \pm p^{\gamma} \frac{a}{b},
$$

for $\gamma \in \mathbb{Z}, a, b \in \mathbb{Z}_{+}$, with a, b not divisble by p and $\operatorname{gcd}(a, b)=1$

Setup

- p any prime, $p=2,3,5, \ldots, \gamma \in \mathbb{Z}, \mathbb{Q}$, let \mathbb{Z}_{+}be the natural numbers If \mathbb{K} is a field, then \mathbb{K}^{\times}is the multiplicative group
- Let $x \in \mathbb{Q}, x \neq 0$, then

$$
x= \pm p^{\gamma} \frac{a}{b}
$$

for $\gamma \in \mathbb{Z}$, $a, b \in \mathbb{Z}_{+}$, with a, b not divisble by p and $\operatorname{gcd}(a, b)=1$

- p-adic norm: $|x|_{p}$ of $x \in \mathbb{Q}$ is $|x|_{p}=p^{-\gamma}$ for $x \neq 0,|0|_{p}:=0$

Setup

- p any prime, $p=2,3,5, \ldots, \gamma \in \mathbb{Z}, \mathbb{Q}$, let \mathbb{Z}_{+}be the natural numbers If \mathbb{K} is a field, then \mathbb{K}^{\times}is the multiplicative group
- Let $x \in \mathbb{Q}, x \neq 0$, then

$$
x= \pm p^{\gamma} \frac{a}{b}
$$

for $\gamma \in \mathbb{Z}, a, b \in \mathbb{Z}_{+}$, with a, b not divisble by p and $\operatorname{gcd}(a, b)=1$

- p-adic norm: $|x|_{p}$ of $x \in \mathbb{Q}$ is $|x|_{p}=p^{-\gamma}$ for $x \neq 0,|0|_{p}:=0$
- \mathbb{Q}_{p} : field of p-adic numbers, is the completion of the field \mathbb{Q} w.r.t. the norm $|\cdot|_{p}$

Facts and Examples

- Every nonzero p-adic number, can be written as

$$
x=\sum_{i=0}^{\infty} x_{i} p^{i}
$$

where $x_{i}=0,1,2, \ldots, p-1, x_{0} \neq 0$

Facts and Examples

- Every nonzero p-adic number, can be written as

$$
x=\sum_{i=0}^{\infty} x_{i} p^{i}
$$

where $x_{i}=0,1,2, \ldots, p-1, x_{0} \neq 0$

- $-\gamma$ is called the order of x and denoted ord $x=-\gamma$ and ord $0:=-\infty$

Facts and Examples II

- In 2-adic:

Facts and Examples II

- In 2-adic:
- $35=1 \cdot 2^{5}+0 \cdot 2^{4}+0 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}$

Facts and Examples II

- In 2-adic:
- $35=1 \cdot 2^{5}+0 \cdot 2^{4}+0 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}$

$$
\frac{1}{3}=\sum_{n=0}^{\infty} 1 \cdot 2^{n}=\{1,1,1,1,1, \ldots\}_{2}
$$

Facts and Examples II

- In 2-adic:
- $35=1 \cdot 2^{5}+0 \cdot 2^{4}+0 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}$

$$
\frac{1}{3}=\sum_{n=0}^{\infty} 1 \cdot 2^{n}=\{1,1,1,1,1, \ldots\}_{2}
$$

- $|4|_{2}=4^{-1},|1 / 4|_{2}=4,|1 / 3|_{2}=1$

Facts and Examples II

- In 2-adic:
- $35=1 \cdot 2^{5}+0 \cdot 2^{4}+0 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}$

$$
\frac{1}{3}=\sum_{n=0}^{\infty} 1 \cdot 2^{n}=\{1,1,1,1,1, \ldots\}_{2}
$$

- $|4|_{2}=4^{-1},|1 / 4|_{2}=4,|1 / 3|_{2}=1$
- If x a nonzero integer, then

$$
x=\sum_{i=0}^{n} x_{i} p^{i}
$$

Norm Properties

- 1.) $|x|_{p} \geq 0$, 2.) $|x y|_{p} \leq|x|_{p}|y|_{p}$

Norm Properties

- 1.) $|x|_{p} \geq 0$, 2.) $|x y|_{p} \leq|x|_{p}|y|_{p}$
- 3.) $|x+y|_{p} \leq \max \left(|x|_{p},|y|_{p}\right)$, moreover

Norm Properties

- 1.) $|x|_{p} \geq 0$, 2.) $|x y|_{p} \leq|x|_{p}|y|_{p}$
- 3.) $|x+y|_{p} \leq \max \left(|x|_{p},|y|_{p}\right)$, moreover
$-|x+y|_{p}=\max \left(|x|_{p},|y|_{p}\right)$ iff $|x|_{p} \neq|y|_{p}$

Norm Properties

- 1.) $|x|_{p} \geq 0$, 2.) $|x y|_{p} \leq|x|_{p}|y|_{p}$
- 3.) $|x+y|_{p} \leq \max \left(|x|_{p},|y|_{p}\right)$, moreover
- $|x+y|_{p}=\max \left(|x|_{p},|y|_{p}\right)$ iff $|x|_{p} \neq|y|_{p}$
- $|x+y|_{p}<|2 x|_{p}$ iff $|x|_{p}=|y|_{p}$

Norm Properties

- 1.) $|x|_{p} \geq 0$, 2.) $|x y|_{p} \leq|x|_{p}|y|_{p}$
- 3.) $|x+y|_{p} \leq \max \left(|x|_{p},|y|_{p}\right)$, moreover
$-|x+y|_{p}=\max \left(|x|_{p},|y|_{p}\right)$ iff $|x|_{p} \neq|y|_{p}$
- $|x+y|_{p}<|2 x|_{p}$ iff $|x|_{p}=|y|_{p}$
- Means the norm in \mathbb{Q}_{p} is an ultrametric

Some Analysis of p-adic numbers

Possible Research Problems
References

Topology of \mathbb{Q}_{p}

- $B_{\gamma}(a)=\left\{x \in \mathbb{Q}_{p}:|x-a|_{p} \leq p^{\gamma}\right\}$-disk with center a and radius p^{γ}

Topology of \mathbb{Q}_{p}

- $B_{\gamma}(a)=\left\{x \in \mathbb{Q}_{p}:|x-a|_{p} \leq p^{\gamma}\right\}$-disk with center a and radius p^{γ}
- $S_{\gamma}(a)=\left\{x \in \mathbb{Q}_{p}:|x-a|_{p}=p^{\gamma}\right\}$-circle with center a and radius p^{γ}

Topology of \mathbb{Q}_{p}

- $B_{\gamma}(a)=\left\{x \in \mathbb{Q}_{p}:|x-a|_{p} \leq p^{\gamma}\right\}$-disk with center a and radius p^{γ}
- $S_{\gamma}(a)=\left\{x \in \mathbb{Q}_{p}:|x-a|_{p}=p^{\gamma}\right\}$-circle with center a and radius p^{γ}
- Have the following relations:

$$
\begin{aligned}
& B_{\gamma}(a)=\bigcup_{\gamma^{\prime} \leq \gamma} S_{\gamma^{\prime}}(a), \quad S_{\gamma}(a)=B_{\gamma}(a) \backslash B_{\gamma-1}(a) \\
& \mathbb{Q}_{p}=\bigcup_{\gamma \in \mathbb{Z}} B_{\gamma}(a), \quad \mathbb{Q}_{p}^{\times}=\bigcup_{\gamma \in \mathbb{Z}} S_{\gamma}(a)
\end{aligned}
$$

Fun facts about the space \mathbb{Q}_{p}

- All triangles are isoceles

Fun facts about the space \mathbb{Q}_{p}

- All triangles are isoceles
- Every point in a disk is its center

Fun facts about the space \mathbb{Q}_{p}

- All triangles are isoceles
- Every point in a disk is its center
- A disk has no boundary

Fun facts about the space \mathbb{Q}_{p}

- All triangles are isoceles
- Every point in a disk is its center
- A disk has no boundary
- A disk is a finite union of disjoint disks of smaller radii

Fun facts about the space \mathbb{Q}_{p}

- All triangles are isoceles
- Every point in a disk is its center
- A disk has no boundary
- A disk is a finite union of disjoint disks of smaller radii
- If $x \in B_{\gamma}(a), B_{\gamma^{\prime}}(b)$, then $B_{\gamma}(a) \subset B_{\gamma^{\prime}}(b)$ or $B_{\gamma^{\prime}}(b) \subset B_{\gamma}(a)$

Fun facts about the space \mathbb{Q}_{p}

- All triangles are isoceles
- Every point in a disk is its center
- A disk has no boundary
- A disk is a finite union of disjoint disks of smaller radii
- If $x \in B_{\gamma}(a), B_{\gamma^{\prime}}(b)$, then $B_{\gamma}(a) \subset B_{\gamma^{\prime}}(b)$ or $B_{\gamma^{\prime}}(b) \subset B_{\gamma}(a)$
- A disk is open and compact

Some Calculus of \mathbb{Q}_{p}

Let $Z_{p}=B_{0}$ (ring of p-adic integers)

Some Calculus of \mathbb{Q}_{p}

- Let $Z_{p}=B_{0}$ (ring of p-adic integers)
- Normally have $d x$ in regular calculus, here we have $d_{p} x$.

Some Calculus of \mathbb{Q}_{p}

- Let $Z_{p}=B_{0}$ (ring of p-adic integers)
- Normally have $d x$ in regular calculus, here we have $d_{p} x$.
- $d_{p} x$ has the following properties:

Some Calculus of \mathbb{Q}_{p}

- Let $Z_{p}=B_{0}$ (ring of p-adic integers)
- Normally have $d x$ in regular calculus, here we have $d_{p} x$.
- $d_{p} x$ has the following properties:
- 1.) $d_{p}(x+a)=d_{p} x$ for $a \in \mathbb{Q}_{p}$, 2.) $d_{p}(a x)=|a|_{p} d_{p} x$ for $a \in \mathbb{Q}_{p}^{\times}$

Some Calculus of \mathbb{Q}_{p}

- Let $Z_{p}=B_{0}$ (ring of p-adic integers)
- Normally have $d x$ in regular calculus, here we have $d_{p} x$.
- $d_{p} x$ has the following properties:
- 1.) $d_{p}(x+a)=d_{p} x$ for $a \in \mathbb{Q}_{p}, 2$.) $d_{p}(a x)=|a|_{p} d_{p} x$ for $a \in \mathbb{Q}_{p}^{\times}$
- We have the following integrals:

$$
\begin{gathered}
\int_{Z_{p}} d_{p} x=1, \quad \int_{B_{\gamma}} d_{p} x=p^{\gamma}, \quad \int_{S_{\gamma}} d_{p} x=\left(1-\frac{1}{p}\right) p^{\gamma} \\
\int_{\mathbb{Q}_{p}} f(x) d_{p} x=\sum_{\gamma=-\infty}^{\infty} \int_{S_{\gamma}} f(x) d_{p} x, \quad \int_{B_{\gamma}}|x|_{p}^{\alpha-1}=\frac{1-p^{-1}}{1-p^{-\alpha}} p^{\alpha \gamma}, \alpha>0
\end{gathered}
$$

Differential Operators

- Let L be a differential operator, we can just think $L=\frac{d}{d x}$, and let Ω be some domain.

Differential Operators

- Let L be a differential operator, we can just think $L=\frac{d}{d x}$, and let Ω be some domain.
- Given functions f and g, one can ask the following type of problem:

Differential Operators

- Let L be a differential operator, we can just think $L=\frac{d}{d x}$, and let Ω be some domain.
- Given functions f and g, one can ask the following type of problem:

$$
\left\{\begin{array}{l}
L u=f \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=g \text { on } \partial \Omega
\end{array}\right.
$$

Differential Operators

- Let L be a differential operator, we can just think $L=\frac{d}{d x}$, and let Ω be some domain.
- Given functions f and g, one can ask the following type of problem:

$$
\left\{\begin{array}{l}
L u=f \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=g \text { on } \partial \Omega
\end{array}\right.
$$

- The goal is to find functions u that satisfy this type of boundary value problem.

Differential Operators II

- Another way to rephrase the goal, is one wants to find, if possible, L^{-1} or $(L-\lambda)^{-1}$ for complex numbers λ.

Differential Operators II

- Another way to rephrase the goal, is one wants to find, if possible, L^{-1} or $(L-\lambda)^{-1}$ for complex numbers λ.
- This has been studied very extensively classically, meaning when $L=\frac{d}{d x}$ or

$$
L=a_{n}(x) \frac{d^{n}}{d x^{n}}+\cdots+a_{1}(x) \frac{d}{d x}+a_{0}(x)
$$

or L involve partial derivatives etc.

Differential Operators II

- Another way to rephrase the goal, is one wants to find, if possible, L^{-1} or $(L-\lambda)^{-1}$ for complex numbers λ.
- This has been studied very extensively classically, meaning when $L=\frac{d}{d x}$ or

$$
L=a_{n}(x) \frac{d^{n}}{d x^{n}}+\cdots+a_{1}(x) \frac{d}{d x}+a_{0}(x)
$$

or L involve partial derivatives etc.

- These types of questions will lead to problems in ODEs or PDEs. Current research still goes on in this type of question.

Relation to p-adic Analysis

- We can ask the same type of question here, though the setup looks vastly different.

Relation to p-adic Analysis

- We can ask the same type of question here, though the setup looks vastly different.
- The domain Ω are now the p-adic trees

Relation to p-adic Analysis

- We can ask the same type of question here, though the setup looks vastly different.
- The domain Ω are now the p-adic trees
- There is a correspondence to the p-adic numbers and the p-adic trees

Relation to p-adic Analysis

- We can ask the same type of question here, though the setup looks vastly different.
- The domain Ω are now the p-adic trees
- There is a correspondence to the p-adic numbers and the p-adic trees
- The boundary of $\Omega, \partial \Omega$ becomes Cantor Sets!

Relation to p-adic Analysis

- We can ask the same type of question here, though the setup looks vastly different.
- The domain Ω are now the p-adic trees
- There is a correspondence to the p-adic numbers and the p-adic trees
- The boundary of $\Omega, \partial \Omega$ becomes Cantor Sets!
- Now L becomes some kind of difference of the vertices and edges making it seem like the problem becomes a discrete problem.

Relation to p-adic Analysis

- We can ask the same type of question here, though the setup looks vastly different.
- The domain Ω are now the p-adic trees
- There is a correspondence to the p-adic numbers and the p-adic trees
- The boundary of $\Omega, \partial \Omega$ becomes Cantor Sets!
- Now L becomes some kind of difference of the vertices and edges making it seem like the problem becomes a discrete problem.
- Now one has to study function spaces of sequences and series that relate to \mathbb{Q}_{p}

References

R
Vladimirov, V.S., Table of Integrals of Complex-valued Functions of p-Adic Arguments, arXiv:math-ph/9911027v1 22 Nov 1999.

The End

Thank You

