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1. Overview

I am an analyst specializing in functional analysis and operator theory. I am also interested
in the theory of partial differential equations. My current work focuses in spectral theory
of Schrödinger and Jacobi operators and noncommutative geometry. All of these areas stem
back to mathematical physics and a lot of the work I have focused on has initially started
as a mathematical physics problem. In fact, in the noncommutative geometry area, I am
interested in Dirac and Dirac-type operators and their analysis classically and the analysis
of them noncommutatively. This analysis also involves spectral analysis as well, which can
tie into the spectral theory for Schrödinger and Jacobi operators. Moreover the analysis of
partial differential equations relates to this theory, so I am also interested in the function
space theory of such equations. The main areas of my interests: noncommutative geometry,
partial differential equations, and spectral theory of Schrödinger and Jacobi operators, will
have its own section ordered alphabetically.

2. Noncommutative Geometry

In the area of noncommutative geometry I am interested in quantum domains and quan-
tum Dirac-type operators over these domains. In my thesis I described what certain non-
commutative (quantum) spaces were and what the types of operators that act in these spaces
were. When I tried to describe the space’s structure, differential-difference operators arose
naturally and I developed a theory for these operators. Since it is known how differential
operators behave on known commutative spaces, one hopes there will be a similar theory
in the quantum case. I was particularly interested in Dirac operators. Knowing how Dirac
operators behaved classically, I wanted to construct their quantum analogs called quantum
Dirac operators. It is natural to consider this construction to be some type of commutator.
To be more specific, the form I used for a quantum Dirac operator δ was

δ(a) = A[a, UW ]

where UW was either a bounded weighted unilateral shift or a bounded weighted bilateral
shift and A was an unbounded diagonal operator. Since the commutation with UW was
bounded, the operator A was introduced so that δ became an unbounded operator. I wanted
δ to be unbounded since the Dirac operator in the classical case is unbounded.

One aspect of the theory of quantum Dirac operators is the index. The Atiyah-Patodi-
Singer Index Theorem (APS) establishes an index formula for Dirac operators subject to
the APS boundary condition on a closed manifold with boundary which depends only on
the topological properties of the manifold. If D is a Dirac or d-bar operator and D∗ is its
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adjoint, then DD∗ and D∗D are self adjoint and their non-zero eigenvalues have the same
multiplicities. However their zero eigenspaces may have different multiplicities. Then it was
shown in [1] that for t ≥ 0

Index(D) := dim Ker(D)− dim Ker(D∗) = tr
(
e−tD

∗D
)
− tr

(
e−tDD

∗)
.

For this to be established, the authors first had to show that D was a Fredholm operator,
meaning that D was closed and D had closed range since D was unbounded, and that D also
had finite dimensional kernel and cokernel. They were able to establish this by showing D
was invertible modulo compact operators which is an alternate way of showing an operator
is Fredholm. This was when the APS boundary condition had to be initially setup. Let M
be a closed manifold with boundary that has a collar structure near the boundary so that
an infinite (half-infinite) cylinder can be attached. In other words if Y is the boundary of
M , then M has a product structure near Y and one can consider Y × R≥0. Moreover the
authors of [1] required that D was decomposed in the following way near the boundary:

D =
∂

∂t
+B

where B was a first order self adjoint elliptic operator acting on C∞(Y,E) and E was a
vector bundle over Y . This decomposition of D extended naturally to Y × R≥0. The APS
boundary condition can be reformulated for Y × R≥0. The condition was that for sections
f(y, t) of E lifted to Y × R≥0, one had

Pf(· , 0) = 0 (2.1)

where P was the positive spectral projection of B. This is a non-local boundary condition
that alleviates problems that classical boundary conditions, such as Dirichlet, have in global
analysis. Since most of my current research has been spent finding inverses or inverses
modulo compact operators to classical and quantum Dirac operators over different closed
manifolds with boundary, I will quote the technical theorem that was established in [1]. The
space of all C∞ functions satisfying (2.1) will be denoted by C∞(Y × R≥0, E;P ) and C∞comp

will denote functions vanishing for t ≥ C for some constant C. Also Hk will denote the
Sobolev space of sections with derivatives up to order k in L2.

Theorem 2.1. There is a linear operator

Q : C∞comp(Y × R≥0, E)→ C∞(Y × R≥0, E;P )

such that

(i) DQg = g for all g ∈ C∞comp(Y × R≥0, E)

(ii) QDf = f for all f ∈ C∞(Y × R≥0, E;P )

(iii) The kernel Q(y, t; z, v) of Q is C∞ for t 6= v; y, z ∈ Y and t, v ∈ R≥0
(iv) Q extends to a continuous map Hk−1 → Hk

loc for all integers k ≥ 1.

The main technique the authors used to prove this was expanding the solutions in terms
of the eigenfunctions of B, in other words, they did a spectral/Fourier decomposition. As
of now, there is no known generic index formula, or even a standard technique, like the
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above theorem, that generalizes the index theorem to noncommutative spaces. The goal
of my work over the past years has been trying to generalize the above theorem into the
noncommutative setup as well as generalize to other non-local boundary conditions and not
just the APS condition. This goal was inspired by [1], but also by the presentation done in the
book [2] and the treatments done in papers [3] and [11]. Throughout my papers and thesis, a
general technique has worked for estimating the parametrices albeit it’s restricted to specific
domains and their quantum analogs. I believe this technique may work in general. The
difficulty lies with figuring out how to solve the differential equation arising from the generic
setup since using the Fourier decomposition technique will produce a higher order ordinary
differential equation that is not easily solved. I believe that this can be gotten around
by using standard techniques in the theory of partial differential equations by estimating
solutions and there should be a corresponding theory for the difference equations that are
produced in the quantum case. This is one of my short term goals.

The technique that was mentioned above was described in my papers with Slawomir
Klimek. See [12] and [13] for details. In [12] we studied parametrices of the d-bar operator
on the quantum disk and quantum annulus. Also the boundary conditions are not quite APS
boundary conditions since the d-bar operator was not able to be decomposed into the special
form that was required by APS. However the boundary condition studied in this paper was
still a global condition. In [13] we were actually able to apply the honest APS boundary
conditions because we studied z∂ on the punctured disk which was able to be decomposed
into the special form. Even though we could apply APS directly in [13], the operator we
chose was not a natural one. Therefore a more generic global boundary condition that was
inspired APS was necessary since the operators that naturally arose here do not have this
special decomposition.

When a good formulation of a quantum disk and a quantum d-bar operator arose one of
the natural questions was about the classical limit of such objects. Even more importantly,
does the quantum d-bar operator converge, in some sense, to the classical d-bar operator?
In [13], this question is answered in two domains, the disk and annulus. The question was
answered through the parametrices to the d-bar operators via continuous fields of Hilbert
spaces. This paper left the open question, “could this analysis be applied to other domains?”
I hope to answer this question.

The papers [15] and [16] almost go hand in hand, though they can be thought of sepa-
rately. In [15], we studied a Dirac operator on the classical solid torus subject to APS-like
global boundary conditions. This boundary condition was partially inspired by the non-local
condition described in [24]. Subtle analysis on the modified Bessel functions was necessary
to show the parametrix to the Dirac operator was compact. Recently in [16], we studied a
more generic Dirac operator on the quantum solid torus subject to global boundary condi-
tion. The global boundary condition here was developed from the one in [15] to suit the
noncommutative structure in the quantum solid torus. Since the modified Bessel functions
played an important role for the solutions in the classical torus paper, there were equally
important quantum analogs to them that arose in the quantum torus paper. In the non-
commutative setup, the analysis of these quantum analogs to the modified Bessel functions
led to the analysis of continued fractions that had sparked interest to a separate paper not
involving any type of Dirac operators, but just an interesting generic analysis paper.
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In [18], Slawomir Klimek, Sumedha Rathnayake, Kaoru Sakai (students of Slawomir’s),
and myself studied different types of estimates of divergent continued fractions. The problem
considered a region in the complex plane which contained values of the convergents of a
continued fraction of a special type. More specifically in our “value region problem” we
considered only even convergents for continued fractions of the Stieltjes type with bounded
ratio of consecutive elements regardless of the convergence of the fractions. Even more
generally, we also studied the same question for tail sequences and for (what we called)
reverse sequences associated with a continued fraction. The main results we obtained in
this paper showed that two types of circles with sufficiently large radii formed such value
regions. Our interest in this problem was motivated by an unrelated study in [16], where
considerations in noncommutative geometry required estimates on certain sequences that
could be interpreted as tail and reverse sequences of a continued fraction. Here we looked at
a far more general situation than needed for [16], namely we considered continued fractions
whose elements were complex numbers with positive real part and a full value region problem.

Continuing on with classical and quantum domains, Slawomir and I, in [17], studied Dirac
operators on the classical and quantum 2-sphere via gluing disks classically and noncommu-
tatively. The concept of the quantum 2-sphere, sometimes called a mirror sphere, studied in
[4] was the main reference. Specifically in the quantum case a generic Dirac type operator
that was developed in [16] was studied. The boundary condition in this paper, however,
was not really an APS type nor a global boundary condition but derived from the necessity
on gluing the disks properly together. Nonetheless the boundary condition was still a valid
and interesting local boundary condition. As with the other papers, the parametrices to the
classical Dirac and quantum Dirac type operators were studied and they were shown to be
compact operators.

Another project that Slawomir, Sumedha and myself also worked on considered spectral
triples continuing the program of quantum domains. This project considered when the
boundary was the Cantor set and the manifold was a discrete set, namely it was a tree
and we construct a spectral triple. The idea of this was inspired by John Pearson’s PhD.
thesis at Georgia Tech [25]. In our paper [19], we constructed a spectral triple for the
C∗-algebra of continuous functions on the space of p-adic integers by using a rooted tree
obtained from coarse-grained approximation of the space, and the forward derivative on the
tree. Additionally, we verified that our spectral triple satisfies the properties of a compact
spectral metric space, and we showed that the metric on the space of p-adic integers induced
by the spectral triple was equivalent to the usual p-adic metric.

In fact, we are currently computing the spectral triples of all quantum domains Slawomir
and I studied, namely the quantum annulus, quantum punctured disk, quantum solid torus,
and the quantum 2-sphere.

In the ongoing process of generalizing quantum domains, Slawomir, Sumedha, Kaoru, and
I constructed a C∗−algebra that is a good candidate to be defined as the quantum pair
of pants, i.e. the quantum disk with two holes. In [20] we computed the spectrum of the
operator of multiplication by the complex coordinate in a Hilbert space of holomorphic func-
tions on a disk with two circular holes. We also determined the structure of the C∗−algebra
generated by that operator. This algebra can be considered as the quantum pair of pants.
The case of a disk with no holes is the classical one. In the Hardy space of the disk the
multiplication operator z is the unilateral shift whose spectrum is the disk. The C∗−algebra
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generated by the unilateral shift, called the Toeplitz algebra, is an extension of the algebra of
compact operators by C(S1), S1 being the boundary of the disk. For the Bergman space the
z operator is a weighted unilateral shift and its spectrum and the C∗−algebra it generates
are the same as in the Hardy space. Partially for those reasons the Toeplitz algebra is often
considered as the quantum disk. We then followed the idea to construct what we called the
quantum pair of pants.

In [23], I was able to generalize the quantum pair of pants to the quantum m-legged pair
of pants, i.e. the quantum disk with m holes with arbitrary centers. I followed the same
idea in [20] and constructed a C∗−algebra that is a reasonable candidate to be termed the
quantum m-legged pair of pants.

Following suit of the analysis of quantum Dirac-type operators I am currently trying to
develop the same kind of analysis for these operators on the quantum pair of pants in spirit
of the papers [12]-[17], excluding [14]. As in the other papers, I am trying to construct
a parametrix in both the classical case and quantum case subject to APS like boundary
conditions and show that they are compact yielding an elliptic boundary value problem.
Developing a similar kind of analysis for these operators on the quantum m-legged pairs of
pants will be a natural project in the future.

Future research that Slawomir and myself plan to work on is trying to develop a way to
glue two noncommutative manifolds in a noncommutative way. We are interested in this
since we think this could be a way in trying to make noncommutative analog of the APS
index theorem.

3. Partial Differential Equations

In the area of partial differential equations, I am interested in regularity conditions, namely
the area of elliptic and parabolic PDEs. In [6], Huang showed that in the elliptic system

Dα(aαβij Dβu
j) = − div f i, the solutions uj(x), for x ∈ Rn satisfied some regularity estimate.

In particular two of the things shown were that first, if aαβij ∈ C(BR) then Du ∈ L2,λ
ϕ , and

secondly if aαβij ∈ VMO(BR) then Du ∈ L2,λ
ϕ . Here BR is the n−dimensional ball of radius

R centered at x0 and L2,λ
ϕ was defined to be the Morrey space. More specifically the Morrey

space is

Lp,λϕ (BR) =

f ∈ Lp(BR) :

(
sup

y0∈BR,0≤ρ≤d

1

ϕ(ρ)
ρ−λ

∫
BR∩Bρ(y0)

|f |p dx

) 1
p

<∞


with 1 ≤ p <∞, 0 ≤ λ ≤ n+ 2, and ϕ is a continuous function on [0, d], ϕ > 0 on (0, d], and
d is the diameter of BR. Moreover the VMO space is just the vanishing mean oscillation
space. In [22], I expanded these two facts in a short paper for a master’s thesis. I was able
to show these results to the parabolic case where now the parabolic system I studied was
uit −Dα(aαβij Dβu

j) = − div f i over the generalized Morrey Space L2,λ
ϕ .

This is the area that I have done few things in. However I would like to expand my
knowledge in this area of PDEs and develop theories based around them. Specifically one
future project would be to go back and expand the rest of the theory developed in [6] to the
parabolic case since to my knowledge this has yet to be done. Other future projects include
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studying other elliptic and parabolic equations and expanding other regularity estimates
that are not already known.

4. Spectral Theory of Schrödinger and Jacobi operators

Finally in the spectral theory area I am working with Christian Remling and Injo Hur.
We are interested in one-dimensional Schrödinger operators,

L = − d2

dx2
+ V (x), (4.1)

with locally integrable potentials V that are in the limit point case at ±∞ and in Jacobi
matrices,

(Ju)n = anun+1 + an−1un−1 + bnun. (4.2)

Here we assume that a, b ∈ `∞(Z), an > 0, bn ∈ R.
These operators have associated half line m functions m±. These are Herglotz functions,

that is, they map the upper half plane C+ holomorphically to itself.
We call an operator reflectionless on a Borel set S ⊂ R of positive Lebesgue measure if

m± satisfy the following identity

m+(x) = −m−(x) for (Lebesgue) a.e. x ∈ S. (4.3)

Reflectionless operators are important because they can be thought of as the fundamental
building blocks of arbitrary operators with some absolutely continuous spectrum. See [8, 26,
27]. Reflectionless operators have remarkable properties, and if an operator is reflectionless
on an interval (rather than a more complicated set), one can say even more. So these
operators are of special interest.

Marchenko [21] developed a certain parametrization of the classMR of Schrödinger oper-
ators H that were reflectionless on (0,∞) and had spectrum contained in [−R2,∞) (this is
paraphrasing as Marchenko did not emphasize this aspect, and his goals were different from
ours). It is in fact easy in principle to give such a parametrization in terms of certain spec-
tral data, which has been used by many authors see [27] or [29] for example. Marchenko’s
parametrization was different, and it made certain properties of reflectionless Schrödinger
operators very transparent.

In [7], we had two general goals: First, we presented a direct and easy approach to
Marchenko’s parametrization that started from scratch and did not use any inverse scattering
theory which Marchenko’s treatment had relied on as its main tool (which then needed to
be combined with a limiting process, as most reflectionless operators do not fall under the
scope of classical scattering theory) and was rather intricate. Marchenko had inequalities
that were imposed on the representing measures σ that were never fully addressed. In our
paper we explained the role of these inequalities. We also extended these ideas to the discrete
setting; in fact, we started with this case as some technical issues from the continuous setting
were absent here. The second goal was to explore some consequences and applications of
Marchenko’s parametrization, in the form developed in our paper [7].

Currently we are studying canonical systems. A canonical system is a family of differential
equations of the form
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Au′(x) = zH(x)u(x) for z ∈ C and A =

(
0 −1
1 0

)
and H(x) is a positive semidefinite matrix. These can be related to Schrödinger equations
and transfer matrices. Transfer matrices can be used to solve these canonical systems. A
lot of the theory for transfer matrices is very difficult to understand. At the moment we
analyzing the theory and trying to see if we can recreate it from scratch to see if there are
easier and more straightforward methods. Christian has a plan to write a book over the
spectral theory of Schrödinger and Jacobi operators and this is something he would like to
include if it turns out the theory can be simplified.

Another project that we recently started was the inverse spectral theory for one-dimensional
periodic Schrödinger operators and periodic Jacobi operators. In [5], the authors study the
operator

L = − d2

dx2
+ V (x)

with potential V (x) = −4α cos 2x− 2α2 cos 4x where α and s are real and natural numbers
respectively. When written as an eigenvalue problem, this is known as the Wittaker-Hill
equation. They used a specific trigonometric substitution and transform the equation into
a seemingly more difficult problem but were able to give criteria for the regularity of the
corresponding potentials and described the spectral properties more in detail, namely when
the gaps are closed. This is only for a specific problem, but since we are interested in the
reverse direction, we are using this as a starting example.

5. Conclusion

In the future I plan to continue to develop the theory of differential and difference opera-
tors that could have various applications to differential/difference equation theory, spectral
theory, and just general solution methods and expansion theorems for those operators acting
on a particular space. I feel that developing these types of expansion theorems will give more
general results about solutions to differential equations, partial and ordinary, since they will
be treated as a differential operator acting on some space of functions. I also believe that in
studying spectral theory for differential/difference operators can have rich results since not
much is known in full generality. These are just some of my long term and short term goals
in mathematics. I feel research is a long term learning process and can develop into different
areas of mathematics that one may have thought had no relation to current research. This
is why I like to always learn new things even if it is from different areas.
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