The Marchenko representation of reflectionless Jacobi and Schrodinger operators

Matt McBride

University of Oklahoma

March 1, 2014

Introduction and Relavent Papers

This is joint work with Injo Hur and Christian Remling.

Introduction and Relavent Papers

- This is joint work with Injo Hur and Christian Remling.
- Hur, I., McBride, M. and Remling, C., The Marchenko Representation of Reflectionless Jacobi and Schrödinger Operators. arXiv:1401.7704. submitted to Trans. AMS.

イロト イポト イヨト イヨト

Introduction and Relavent Papers

- This is joint work with Injo Hur and Christian Remling.
- Hur, I., McBride, M. and Remling, C., The Marchenko Representation of Reflectionless Jacobi and Schrödinger Operators. arXiv:1401.7704. submitted to Trans. AMS.
- Marchenko, V., The Cauchy Problem for the KdV Equation with Non-decreasing Initial Data. What is Integrability?, 273 -318, Springer, Berlin, 1991.

・ロト ・回ト ・ヨト ・ヨト

Introduction and Relavent Papers

- This is joint work with Injo Hur and Christian Remling.
- Hur, I., McBride, M. and Remling, C., The Marchenko Representation of Reflectionless Jacobi and Schrödinger Operators. arXiv:1401.7704. submitted to Trans. AMS.
- Marchenko, V., The Cauchy Problem for the KdV Equation with Non-decreasing Initial Data. What is Integrability?, 273 -318, Springer, Berlin, 1991.
- Remling, C., The Absolutely Continuous Spectrum of Jacobi Matrices. Annals of Math., 174, 125 - 171, 2011.

(ロ) (同) (E) (E) (E)

Korteweg-de Vries Equation

•
$$u_t = 6uu_x - u_{xxx}$$

イロン イヨン イヨン イヨン

æ

Korteweg-de Vries Equation

•
$$u_t = 6uu_x - u_{xxx}$$

Can transform this PDE into the following Lax pair

Korteweg-de Vries Equation

•
$$u_t = 6uu_x - u_{xxx}$$

Can transform this PDE into the following Lax pair

$$\frac{dL}{dt} = [P, L]$$

Korteweg-de Vries Equation

•
$$u_t = 6uu_x - u_{xxx}$$

Can transform this PDE into the following Lax pair

$$\frac{dL}{dt} = [P, L]$$
• where $L = -D^2 + u$, $P = -4D^3 + 3(uD + Du)$, and $D = \partial/\partial x$

Korteweg-de Vries Equation

•
$$u_t = 6uu_x - u_{xxx}$$

Can transform this PDE into the following Lax pair

$$\frac{dL}{dt} = [P, L]$$

- where $L = -D^2 + u$, $P = -4D^3 + 3(uD + Du)$, and $D = \partial/\partial x$
- Studying the KdV equation will amount to studying the operator L.

One-dimensional Schrödinger Operators

Want to study:

$$L=-\frac{d^2}{dx^2}+V(x)$$

One-dimensional Schrödinger Operators

Want to study:

$$L=-\frac{d^2}{dx^2}+V(x)$$

▶ on $L^2(\mathbb{R})$, where $V \in L^1_{loc}(\mathbb{R})$ and have limit point case at $\pm \infty$.

・ロン ・回 と ・ ヨ と ・ ヨ と

One-dimensional Schrödinger Operators

Want to study:

$$L=-\frac{d^2}{dx^2}+V(x)$$

- ▶ on $L^2(\mathbb{R})$, where $V \in L^1_{loc}(\mathbb{R})$ and have limit point case at $\pm \infty$.
- ► In general, Ly = \lambda y with a condition at 0, Dirichlet for example, will yield limit points or limit circles, known as Weyl circles.

・ロト ・回ト ・ヨト ・ヨト

Limit points and Limit Circles

Study *D* with domain:

▶ Given an interval (*a*, *b*),

Limit points and Limit Circles

Study D with domain:

- ▶ Given an interval (*a*, *b*),
- ▶ L is in the limit circle case at a if there is a $u \in \text{dom}(L)$ with $W(u^*, u)(a) = 0$ such that $W(u, f) \neq 0$ for at least one $f \in \text{dom}(L)$.

・ロン ・回と ・ヨン ・ヨン

Limit points and Limit Circles

Study *D* with domain:

- ▶ Given an interval (*a*, *b*),
- L is in the limit circle case at a if there is a $u \in dom(L)$ with $W(u^*, u)(a) = 0$ such that $W(u, f) \neq 0$ for at least one $f \in dom(L)$.
- Otherwise we call L in the limit point case.

イロト イポト イヨト イヨト

Weyl-Titchmarsh Functions I

For λ ∈ C⁺, assuming the limit point case for L, Dirichlet condition at 0, and the other conditions on L from before, there are unique solutions u_±, up to a constant factor, of

$$Ly = \lambda y$$

such that $u_{\pm} \in L^2$ near $\pm \infty$ respectively.

・ロン ・回と ・ヨン ・ヨン

Weyl-Titchmarsh Functions I

For λ ∈ C⁺, assuming the limit point case for L, Dirichlet condition at 0, and the other conditions on L from before, there are unique solutions u_±, up to a constant factor, of

$$Ly = \lambda y$$

such that $u_{\pm} \in L^2$ near $\pm \infty$ respectively.

This is also the domain of L.

・ロト ・回ト ・ヨト ・ヨト

Weyl-Titchmarsh Functions I

For λ ∈ C⁺, assuming the limit point case for L, Dirichlet condition at 0, and the other conditions on L from before, there are unique solutions u_±, up to a constant factor, of

$$Ly = \lambda y$$

such that $u_{\pm} \in L^2$ near $\pm \infty$ respectively.

- This is also the domain of L.
- Define the Weyl-Titchmarsh m-functions as

$$m_{\pm}(\lambda) = rac{u_{\pm}'(0,\lambda)}{u_{\pm}(0,\lambda)}$$

・ロト ・回ト ・ヨト ・ヨト

Weyl-Titchmarsh Functions II

► Can think of these functions as splitting L into two parts, L₋ corresponding to (-∞, 0), and L₊ corresponding to (0, ∞) and thinking them as a matrix

イロト イヨト イヨト イヨト

Weyl-Titchmarsh Functions II

- ► Can think of these functions as splitting L into two parts, L₋ corresponding to (-∞, 0), and L₊ corresponding to (0, ∞) and thinking them as a matrix
- Then studying the resolvent set on the diagnoal $\langle \delta_0, (L_{\pm} \lambda)^{-1} \delta_0 \rangle$

(ロ) (同) (E) (E) (E)

Weyl-Titchmarsh Functions II

- ► Can think of these functions as splitting L into two parts, L₋ corresponding to (-∞, 0), and L₊ corresponding to (0, ∞) and thinking them as a matrix
- Then studying the resolvent set on the diagnoal $\langle \delta_0, (L_{\pm} \lambda)^{-1} \delta_0 \rangle$
- Which can also be thought of as a Green's function.

Weyl-Titchmarsh Functions II

- ► Can think of these functions as splitting L into two parts, L₋ corresponding to (-∞, 0), and L₊ corresponding to (0,∞) and thinking them as a matrix
- Then studying the resolvent set on the diagnoal $\langle \delta_0, (L_{\pm} \lambda)^{-1} \delta_0 \rangle$
- Which can also be thought of as a Green's function.
- ► $m_{\pm}(\lambda)$ has the following asymptotics as $|\lambda| \to \infty$ in $\varepsilon < \arg \lambda < \pi \varepsilon$

$$m_{\pm}(\lambda) = \sqrt{-\lambda} + \mathrm{o}(1)$$

<ロ> (四) (四) (注) (三) (三)

Reflectionless Operators

L is said to be <u>reflectionless</u> on a Borel set S ⊂ R with m(S) > 0 if its m-functions satisfy the following:

イロン 不同と 不同と 不同と

Reflectionless Operators

L is said to be <u>reflectionless</u> on a Borel set S ⊂ ℝ with m(S) > 0 if its m-functions satisfy the following:

$$m_+(x) = -\overline{m_-(x)}$$

for a.e. $x \in S$.

イロン 不同と 不同と 不同と

Reflectionless Operators

L is said to be <u>reflectionless</u> on a Borel set S ⊂ ℝ with m(S) > 0 if its m-functions satisfy the following:

$$m_+(x) = -\overline{m_-(x)}$$

for a.e. $x \in S$.

Define the following set

 $\mathcal{M}_R = \left\{ L : L \text{ is reflectionless on } (0, \infty) \text{ and } \sigma(L) \subset [-R^2, \infty) \right\}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Herglotz Functions

► Recall a function f(λ) : C⁺ → C⁺ which is holomorphic is called a <u>Herglotz</u> function and has the following representation:

・ロン ・回と ・ヨン ・ヨン

Herglotz Functions

►

► Recall a function f(λ) : C⁺ → C⁺ which is holomorphic is called a <u>Herglotz</u> function and has the following representation:

$$f(\lambda) = a + b\lambda + \int_{\mathbb{R}} \left(rac{1}{t-\lambda} - rac{t}{1+t^2}
ight) \, d\sigma(t)$$

a and *b* are real, and *b* > 0, σ nonzero measure on \mathbb{R} such that $\int_{\mathbb{R}} (1+t^2)^{-1} d\sigma(t) < \infty$.

(ロ) (同) (E) (E) (E)

Some Preperation

▶ For a reflectionless *L*, we get the following function:

Some Preperation

► For a reflectionless *L*, we get the following function:

$$M(\lambda) = \left\{egin{array}{cc} m_+(\lambda) & \lambda \in \mathbb{C}^+ \ - \overline{m_-(\overline{\lambda})} & \lambda \in \mathbb{C}^- \end{array}
ight.$$

Some Preperation

► For a reflectionless *L*, we get the following function:

$$M(\lambda) = \left\{egin{array}{cc} m_+(\lambda) & \lambda \in \mathbb{C}^+ \ - \overline{m_-(\overline{\lambda})} & \lambda \in \mathbb{C}^- \end{array}
ight.$$

• This $M: \Omega \to \mathbb{C}^+$ is holomophic where $\Omega = \mathbb{C}^+ \cup (0,\infty) \cup \mathbb{C}^-$

3

Some Preperation

►

► For a reflectionless *L*, we get the following function:

$$M(\lambda) = \left\{egin{array}{cc} m_+(\lambda) & \lambda \in \mathbb{C}^+ \ - \overline{m_-(\overline{\lambda})} & \lambda \in \mathbb{C}^- \end{array}
ight.$$

- This $M: \Omega \to \mathbb{C}^+$ is holomophic where $\Omega = \mathbb{C}^+ \cup (0,\infty) \cup \mathbb{C}^-$
- ► Using the conformal map φ : C⁺ → Ω given by φ(λ) = −λ², we get

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

Some Preperation

►

► For a reflectionless *L*, we get the following function:

$$\mathcal{M}(\lambda) = \left\{egin{array}{cc} m_+(\lambda) & \lambda \in \mathbb{C}^+ \ - \overline{m_-(\overline{\lambda})} & \lambda \in \mathbb{C}^- \end{array}
ight.$$

- This $M: \Omega \to \mathbb{C}^+$ is holomophic where $\Omega = \mathbb{C}^+ \cup (0,\infty) \cup \mathbb{C}^-$
- ► Using the conformal map φ : C⁺ → Ω given by φ(λ) = −λ², we get
- the following Herglotz function $F(\lambda) = M(\varphi(\lambda))$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

Main Theorem (Continuous Case)

Theorem

 $L \in \mathcal{M}_R$ iff the associated F-function is of the form

$$F(\lambda) = \lambda + \int_{\mathbb{R}} \frac{d\sigma(t)}{t-\lambda}$$

for some finite Borel measure σ on (-R, R) such that

$$1+\int_{\mathbb{R}}rac{d\sigma(t)}{t^2-R^2}\geq 0$$

Moreover if $L \in \mathcal{M}_R$, then V is real analytic. More specifically V(x) has a holomophic continuation V(z) to the strip $|Im \ z| < 1/R$.

Jacobi Operators

Now interested in Jacobi operators/matrices

イロン イヨン イヨン イヨン

э

Jacobi Operators

- Now interested in Jacobi operators/matrices
- ▶ Recall a Jacobi operator on a numerical function $u \in \ell^p(\mathbb{Z})$ is

$$(Ju)_n = a_n u_{n+1} + a_{n-1} u_{n-1} + b_n u_n$$

where a and b are in $\ell^{\infty}(\mathbb{Z})$, $a_n > 0$, and $b_n \in \mathbb{R}$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Jacobi Operators

- Now interested in Jacobi operators/matrices
- ▶ Recall a Jacobi operator on a numerical function $u \in \ell^p(\mathbb{Z})$ is

$$(Ju)_n = a_n u_{n+1} + a_{n-1} u_{n-1} + b_n u_n$$

where a and b are in $\ell^{\infty}(\mathbb{Z})$, $a_n > 0$, and $b_n \in \mathbb{R}$.

• We can again study the equation $Ju = \lambda u$ with $u \in \ell^2(\mathbb{Z})$.

Reflectionless Jacobi Operators

▶ Now we want J to be reflectionless on (-2,2). The definiton for reflectionless is the same, but the m-functions here are different

・ロン ・回と ・ヨン ・ヨン

Reflectionless Jacobi Operators

- ▶ Now we want J to be reflectionless on (-2, 2). The definiton for reflectionless is the same, but the m−functions here are different
- For various reasons, it's necessary that ||J|| ≤ R for some R ≥ 2. Want to study this J now on l²(Z).

・ロン ・回 と ・ 回 と ・ 回 と

Reflectionless Jacobi Operators

- ▶ Now we want J to be reflectionless on (-2, 2). The definiton for reflectionless is the same, but the m−functions here are different
- For various reasons, it's necessary that ||J|| ≤ R for some R ≥ 2. Want to study this J now on ℓ²(Z).
- We have a similar \mathcal{M} space like in the continuous case.

・ロン ・回 と ・ ヨ と ・ ヨ と

Reflectionless Jacobi Operators

- ▶ Now we want J to be reflectionless on (-2, 2). The definiton for reflectionless is the same, but the m−functions here are different
- For various reasons, it's necessary that ||J|| ≤ R for some R ≥ 2. Want to study this J now on l²(Z).
- We have a similar \mathcal{M} space like in the continuous case.

Let

$$\mathcal{M}_R = \{J : J \text{ is reflectionless on } (-2,2) \text{ for } R \ge 2\}$$

(ロ) (同) (E) (E) (E)

m–Functions Again

• For $\lambda \in \mathbb{C}^+$, let $u_{\pm}(n, \lambda)$ be the two solutions to

$$a_n u(n+1,\lambda) + a_{n-1} u(n-1,\lambda) + b_n u(n,\lambda) = \lambda u(n,\lambda)$$

that are square summable near $\pm\infty$ respectively

m–Functions Again

▶ For $\lambda \in \mathbb{C}^+$, let $u_{\pm}(n,\lambda)$ be the two solutions to

$$a_n u(n+1,\lambda) + a_{n-1} u(n-1,\lambda) + b_n u(n,\lambda) = \lambda u(n,\lambda)$$

that are square summable near $\pm\infty$ respectively

► The fact that ||J|| < R guarantees these are unique solutions up to a factor

・ロン ・四マ ・ヨマ ・ヨマ

m–Functions Again

▶ For $\lambda \in \mathbb{C}^+$, let $u_{\pm}(n,\lambda)$ be the two solutions to

$$a_n u(n+1,\lambda) + a_{n-1} u(n-1,\lambda) + b_n u(n,\lambda) = \lambda u(n,\lambda)$$

that are square summable near $\pm\infty$ respectively

- ► The fact that ||J|| < R guarantees these are unique solutions up to a factor
- The *m*-functions are then defined to be

$$m_{\pm}(\lambda) = \mp \frac{u_{\pm}(1,\lambda)}{a_0 u_{\pm}(0,\lambda)}$$

・ロット (四) (日) (日)

More Herglotz

▶ Since *J* is reflectionless, we again get the function:

イロン 不同と 不同と 不同と

э

More Herglotz

▶ Since *J* is reflectionless, we again get the function:

$$M(\lambda) = \left\{egin{array}{cc} m_+(\lambda) & \lambda \in \mathbb{C}^+ \ - \overline{m_-(\overline{\lambda})} & \lambda \in \mathbb{C}^- \end{array}
ight.$$

イロン 不同と 不同と 不同と

3

More Herglotz

▶ Since J is reflectionless, we again get the function:

$$M(\lambda) = \left\{egin{array}{cc} m_+(\lambda) & \lambda \in \mathbb{C}^+ \ - \overline{m_-(\overline{\lambda})} & \lambda \in \mathbb{C}^- \end{array}
ight.$$

► This $M : \Omega \to \mathbb{C}^+$ is again holomophic where now $\Omega = \mathbb{C}^+ \cup (-2, 2) \cup \mathbb{C}^-$

・ロット (四) (日) (日)

3

More Herglotz

▶ Since J is reflectionless, we again get the function:

$$M(\lambda) = \left\{egin{array}{cc} m_+(\lambda) & \lambda \in \mathbb{C}^+ \ - \overline{m_-(\overline{\lambda})} & \lambda \in \mathbb{C}^- \end{array}
ight.$$

- ► This $M : \Omega \to \mathbb{C}^+$ is again holomophic where now $\Omega = \mathbb{C}^+ \cup (-2, 2) \cup \mathbb{C}^-$
- ▶ Using the conformal map $\varphi : \mathbb{C}^+ \to \Omega$ given by $\varphi(\lambda) = -\lambda \lambda^{-1}$ we get

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

More Herglotz

▶ Since J is reflectionless, we again get the function:

$$M(\lambda) = \left\{egin{array}{cc} m_+(\lambda) & \lambda \in \mathbb{C}^+ \ - \overline{m_-(\overline{\lambda})} & \lambda \in \mathbb{C}^- \end{array}
ight.$$

- ► This $M : \Omega \to \mathbb{C}^+$ is again holomophic where now $\Omega = \mathbb{C}^+ \cup (-2, 2) \cup \mathbb{C}^-$
- ▶ Using the conformal map $\varphi : \mathbb{C}^+ \to \Omega$ given by $\varphi(\lambda) = -\lambda \lambda^{-1}$ we get
- the following Herglotz function $F(\lambda) = M(\varphi(\lambda))$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

More Herglotz

▶ Since J is reflectionless, we again get the function:

$$M(\lambda) = \left\{egin{array}{cc} m_+(\lambda) & \lambda \in \mathbb{C}^+ \ - \overline{m_-(\overline{\lambda})} & \lambda \in \mathbb{C}^- \end{array}
ight.$$

- ► This $M : \Omega \to \mathbb{C}^+$ is again holomophic where now $\Omega = \mathbb{C}^+ \cup (-2, 2) \cup \mathbb{C}^-$
- ▶ Using the conformal map $\varphi : \mathbb{C}^+ \to \Omega$ given by $\varphi(\lambda) = -\lambda \lambda^{-1}$ we get
- the following Herglotz function $F(\lambda) = M(\varphi(\lambda))$.
- ▶ It should be noted $\varphi : S^+ \to (-2,2), \varphi : \mathbb{D}^+ \to \mathbb{C}^+$, and $\varphi : (\mathbb{D}^+)^c \to \mathbb{C}^-$.

Some Setup

It r be the solution to r + 1/r = R with 0 < r ≤ 1 (Well defined as R ≥ 2).</p>

・ロン ・回 とくほど ・ ほとう

3

Some Setup

- If r be the solution to r + 1/r = R with 0 < r ≤ 1 (Well defined as R ≥ 2).</p>
- Also denote

$$\sigma_n = \int_{\mathbb{R}} t^n \, d\sigma(t)$$

the moments of the measure σ for $n \in \mathbb{Z}$.

・ロン ・四マ ・ヨマ ・ヨマ

3

Main Theorem (Discrete Case)

Theorem

 $J \in \mathcal{M}_R$ iff the associated F-function is of the form

$${\sf F}(\lambda) = -\sigma_{-1} + (1-\sigma_{-2})\lambda + \int_{\mathbb{R}} {d\sigma(t)\over t-\lambda}$$

for some finite Borel measure σ on $(-1/r,-r) \cup (r,1/r)$ such that

$$1-\sigma_{-2}+\int_{\mathbb{R}}\frac{d\sigma(t)}{t^2+ct+1}>0$$

for all |c| > R.

・ 同 ト ・ ヨ ト ・ ヨ ト

Meaning

 These theorems say if we have L or J, then they determine their respective m-functions and thus their respective F-functions and measures σ

イロト イヨト イヨト イヨト

3

Meaning

- These theorems say if we have L or J, then they determine their respective m-functions and thus their respective F-functions and measures σ
- On the otherhand, if we have a measure σ satisfying the conditions of either theorem, we can define an *F*-function and thus completely determine a unique *L* or *J*.

Meaning

- These theorems say if we have L or J, then they determine their respective m-functions and thus their respective F-functions and measures σ
- On the otherhand, if we have a measure σ satisfying the conditions of either theorem, we can define an *F*-function and thus completely determine a unique *L* or *J*.
- In otherwords, we can uniquely determine an operator of these types knowing only the associated measure satisfying some conditions.

(ロ) (同) (E) (E) (E)

Bibliography

- Hur, I., McBride, M. and Remling, C., The Marchenko Representation of Reflectionless Jacobi and Schrödinger Operators. arXiv:1401.7704. Submitted to Trans. AMS.
- Marchenko, V., The Cauchy Problem for the KdV Equation with Non-decreasing Initial Data. What is Integrability?, 273 -318, Springer, Berlin, 1991.
- Remling, C., The Absolutely Continuous Spectrum of Jacobi Matrices. Annals of Math., 174, 125 - 171, 2011.

・ロン ・回 と ・ 回 と ・ 回 と

The End

Thank You

Matt McBride The Marchenko representation of reflectionless Jacobi and Sch

Э