The Marchenko representation of reflectionless Jacobi and Schrodinger operators

Matt McBride

University of Oklahoma
March 1, 2014

Introduction and Relavent Papers

- This is joint work with Injo Hur and Christian Remling.

Introduction and Relavent Papers

- This is joint work with Injo Hur and Christian Remling.
- Hur, I., McBride, M. and Remling, C., The Marchenko Representation of Reflectionless Jacobi and Schrödinger Operators. arXiv:1401.7704. submitted to Trans. AMS.

Introduction and Relavent Papers

- This is joint work with Injo Hur and Christian Remling.
- Hur, I., McBride, M. and Remling, C., The Marchenko Representation of Reflectionless Jacobi and Schrödinger Operators. arXiv:1401.7704. submitted to Trans. AMS.
- Marchenko, V., The Cauchy Problem for the KdV Equation with Non-decreasing Initial Data. What is Integrability?, 273 318, Springer, Berlin, 1991.

Introduction and Relavent Papers

- This is joint work with Injo Hur and Christian Remling.
- Hur, I., McBride, M. and Remling, C., The Marchenko Representation of Reflectionless Jacobi and Schrödinger Operators. arXiv:1401.7704. submitted to Trans. AMS.
- Marchenko, V., The Cauchy Problem for the KdV Equation with Non-decreasing Initial Data. What is Integrability?, 273 318, Springer, Berlin, 1991.
- Remling, C., The Absolutely Continuous Spectrum of Jacobi Matrices. Annals of Math., 174, 125-171, 2011.

Korteweg-de Vries Equation

- $u_{t}=6 u u_{x}-u_{x x x}$

Korteweg-de Vries Equation

- $u_{t}=6 u u_{x}-u_{x x x}$
- Can transform this PDE into the following Lax pair

Korteweg-de Vries Equation

- $u_{t}=6 u u_{x}-u_{x x x}$
- Can transform this PDE into the following Lax pair

$$
\frac{d L}{d t}=[P, L]
$$

Korteweg-de Vries Equation

- $u_{t}=6 u u_{x}-u_{x x x}$
- Can transform this PDE into the following Lax pair

$$
\frac{d L}{d t}=[P, L]
$$

- where $L=-D^{2}+u, P=-4 D^{3}+3(u D+D u)$, and $D=\partial / \partial x$

Korteweg-de Vries Equation

- $u_{t}=6 u u_{x}-u_{x x x}$
- Can transform this PDE into the following Lax pair

$$
\frac{d L}{d t}=[P, L]
$$

- where $L=-D^{2}+u, P=-4 D^{3}+3(u D+D u)$, and $D=\partial / \partial x$
- Studying the KdV equation will amount to studying the operator L.

One-dimensional Schrödinger Operators

- Want to study:

$$
L=-\frac{d^{2}}{d x^{2}}+V(x)
$$

One-dimensional Schrödinger Operators

- Want to study:

$$
L=-\frac{d^{2}}{d x^{2}}+V(x)
$$

- on $L^{2}(\mathbb{R})$, where $V \in L_{\text {loc }}^{1}(\mathbb{R})$ and have limit point case at $\pm \infty$.

One-dimensional Schrödinger Operators

- Want to study:

$$
L=-\frac{d^{2}}{d x^{2}}+V(x)
$$

- on $L^{2}(\mathbb{R})$, where $V \in L_{\text {loc }}^{1}(\mathbb{R})$ and have limit point case at $\pm \infty$.
- In general, $L y=\lambda y$ with a condition at 0 , Dirichlet for example, will yield limit points or limit circles, known as Weyl circles.

Limit points and Limit Circles

Study D with domain:

- Given an interval (a, b),

Limit points and Limit Circles

Study D with domain:

- Given an interval (a, b),
- L is in the limit circle case at a if there is a $u \in \operatorname{dom}(L)$ with $W\left(u^{*}, u\right)(a)=0$ such that $W(u, f) \neq 0$ for at least one $f \in \operatorname{dom}(L)$.

Limit points and Limit Circles

Study D with domain:

- Given an interval (a, b),
- L is in the limit circle case at a if there is a $u \in \operatorname{dom}(L)$ with $W\left(u^{*}, u\right)(a)=0$ such that $W(u, f) \neq 0$ for at least one $f \in \operatorname{dom}(L)$.
- Otherwise we call L in the limit point case.

Weyl-Titchmarsh Functions I

- For $\lambda \in \mathbb{C}^{+}$, assuming the limit point case for L, Dirichlet condition at 0 , and the other conditions on L from before, there are unique solutions $u_{ \pm}$, up to a constant factor, of

$$
L y=\lambda y
$$

such that $u_{ \pm} \in L^{2}$ near $\pm \infty$ respectively.

Weyl-Titchmarsh Functions I

- For $\lambda \in \mathbb{C}^{+}$, assuming the limit point case for L, Dirichlet condition at 0 , and the other conditions on L from before, there are unique solutions $u_{ \pm}$, up to a constant factor, of

$$
L y=\lambda y
$$

such that $u_{ \pm} \in L^{2}$ near $\pm \infty$ respectively.

- This is also the domain of L.

Weyl-Titchmarsh Functions I

- For $\lambda \in \mathbb{C}^{+}$, assuming the limit point case for L, Dirichlet condition at 0 , and the other conditions on L from before, there are unique solutions $u_{ \pm}$, up to a constant factor, of

$$
L y=\lambda y
$$

such that $u_{ \pm} \in L^{2}$ near $\pm \infty$ respectively.

- This is also the domain of L.
- Define the Weyl-Titchmarsh m-functions as

$$
m_{ \pm}(\lambda)=\frac{u_{ \pm}^{\prime}(0, \lambda)}{u_{ \pm}(0, \lambda)}
$$

Weyl-Titchmarsh Functions II

- Can think of these functions as splitting L into two parts, L_{-} corresponding to $(-\infty, 0)$, and L_{+}corresponding to $(0, \infty)$ and thinking them as a matrix

Weyl-Titchmarsh Functions II

- Can think of these functions as splitting L into two parts, L_{-} corresponding to $(-\infty, 0)$, and L_{+}corresponding to $(0, \infty)$ and thinking them as a matrix
- Then studying the resolvent set on the diagnoal $\left\langle\delta_{0},\left(L_{ \pm}-\lambda\right)^{-1} \delta_{0}\right\rangle$

Weyl-Titchmarsh Functions II

- Can think of these functions as splitting L into two parts, L_{-} corresponding to $(-\infty, 0)$, and L_{+}corresponding to $(0, \infty)$ and thinking them as a matrix
- Then studying the resolvent set on the diagnoal $\left\langle\delta_{0},\left(L_{ \pm}-\lambda\right)^{-1} \delta_{0}\right\rangle$
- Which can also be thought of as a Green's function.

Weyl-Titchmarsh Functions II

- Can think of these functions as splitting L into two parts, L_{-} corresponding to $(-\infty, 0)$, and L_{+}corresponding to $(0, \infty)$ and thinking them as a matrix
- Then studying the resolvent set on the diagnoal $\left\langle\delta_{0},\left(L_{ \pm}-\lambda\right)^{-1} \delta_{0}\right\rangle$
- Which can also be thought of as a Green's function.
- $m_{ \pm}(\lambda)$ has the following asymptotics as $|\lambda| \rightarrow \infty$ in
$\varepsilon<\arg \lambda<\pi-\varepsilon$

$$
m_{ \pm}(\lambda)=\sqrt{-\lambda}+o(1)
$$

Reflectionless Operators

- L is said to be reflectionless on a Borel set $S \subset \mathbb{R}$ with $m(S)>0$ if its m-functions satisfy the following:

Reflectionless Operators

- L is said to be reflectionless on a Borel set $S \subset \mathbb{R}$ with $m(S)>0$ if its m-functions satisfy the following:

$$
m_{+}(x)=-\overline{m_{-}(x)}
$$

for a.e. $x \in S$.

Reflectionless Operators

- L is said to be reflectionless on a Borel set $S \subset \mathbb{R}$ with $m(S)>0$ if its m-functions satisfy the following:

$$
m_{+}(x)=-\overline{m_{-}(x)}
$$

for a.e. $x \in S$.

- Define the following set
$\mathcal{M}_{R}=\left\{L: L\right.$ is reflectionless on $(0, \infty)$ and $\left.\sigma(L) \subset\left[-R^{2}, \infty\right)\right\}$

Herglotz Functions

- Recall a function $f(\lambda): \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$which is holomorphic is called a Herglotz function and has the following representation:

Herglotz Functions

- Recall a function $f(\lambda): \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$which is holomorphic is called a Herglotz function and has the following representation:

$$
f(\lambda)=a+b \lambda+\int_{\mathbb{R}}\left(\frac{1}{t-\lambda}-\frac{t}{1+t^{2}}\right) d \sigma(t)
$$

a and b are real, and $b>0, \sigma$ nonzero measure on \mathbb{R} such that $\int_{\mathbb{R}}\left(1+t^{2}\right)^{-1} d \sigma(t)<\infty$.

Some Preperation

- For a reflectionless L, we get the following function:

Some Preperation

- For a reflectionless L, we get the following function:

$$
M(\lambda)= \begin{cases}m_{+}(\lambda) & \lambda \in \mathbb{C}^{+} \\ -\overline{m_{-}(\bar{\lambda})} & \lambda \in \mathbb{C}^{-}\end{cases}
$$

Some Preperation

- For a reflectionless L, we get the following function:

$$
M(\lambda)= \begin{cases}m_{+}(\lambda) & \lambda \in \mathbb{C}^{+} \\ -\overline{m_{-}(\bar{\lambda})} & \lambda \in \mathbb{C}^{-}\end{cases}
$$

- This $M: \Omega \rightarrow \mathbb{C}^{+}$is holomophic where $\Omega=\mathbb{C}^{+} \cup(0, \infty) \cup \mathbb{C}^{-}$

Some Preperation

- For a reflectionless L, we get the following function:

$$
M(\lambda)= \begin{cases}m_{+}(\lambda) & \lambda \in \mathbb{C}^{+} \\ -\overline{m_{-}(\bar{\lambda})} & \lambda \in \mathbb{C}^{-}\end{cases}
$$

- This $M: \Omega \rightarrow \mathbb{C}^{+}$is holomophic where $\Omega=\mathbb{C}^{+} \cup(0, \infty) \cup \mathbb{C}^{-}$
- Using the conformal map $\varphi: \mathbb{C}^{+} \rightarrow \Omega$ given by $\varphi(\lambda)=-\lambda^{2}$, we get

Some Preperation

- For a reflectionless L, we get the following function:

$$
M(\lambda)=\left\{\begin{array}{l}
m_{+}(\lambda) \quad \lambda \in \mathbb{C}^{+} \\
-\overline{m_{-}(\bar{\lambda})} \quad \lambda \in \mathbb{C}^{-}
\end{array}\right.
$$

- This $M: \Omega \rightarrow \mathbb{C}^{+}$is holomophic where $\Omega=\mathbb{C}^{+} \cup(0, \infty) \cup \mathbb{C}^{-}$
- Using the conformal map $\varphi: \mathbb{C}^{+} \rightarrow \Omega$ given by $\varphi(\lambda)=-\lambda^{2}$, we get
- the following Herglotz function $F(\lambda)=M(\varphi(\lambda))$.

Main Theorem (Continuous Case)

Theorem

$L \in \mathcal{M}_{R}$ iff the associated F-function is of the form

$$
F(\lambda)=\lambda+\int_{\mathbb{R}} \frac{d \sigma(t)}{t-\lambda}
$$

for some finite Borel measure σ on $(-R, R)$ such that

$$
1+\int_{\mathbb{R}} \frac{d \sigma(t)}{t^{2}-R^{2}} \geq 0
$$

Moreover if $L \in \mathcal{M}_{R}$, then V is real analytic. More specifically $V(x)$ has a holomophic continuation $V(z)$ to the strip $|\operatorname{Im} z|<1 / R$.

Jacobi Operators

- Now interested in Jacobi operators/matrices

Jacobi Operators

- Now interested in Jacobi operators/matrices
- Recall a Jacobi operator on a numerical function $u \in \ell^{p}(\mathbb{Z})$ is

$$
(J u)_{n}=a_{n} u_{n+1}+a_{n-1} u_{n-1}+b_{n} u_{n}
$$

where a and b are in $\ell^{\infty}(\mathbb{Z}), a_{n}>0$, and $b_{n} \in \mathbb{R}$.

Jacobi Operators

- Now interested in Jacobi operators/matrices
- Recall a Jacobi operator on a numerical function $u \in \ell^{p}(\mathbb{Z})$ is

$$
(J u)_{n}=a_{n} u_{n+1}+a_{n-1} u_{n-1}+b_{n} u_{n}
$$

where a and b are in $\ell^{\infty}(\mathbb{Z}), a_{n}>0$, and $b_{n} \in \mathbb{R}$.

- We can again study the equation $J u=\lambda u$ with $u \in \ell^{2}(\mathbb{Z})$.

Reflectionless Jacobi Operators

- Now we want J to be reflectionless on $(-2,2)$. The definiton for reflectionless is the same, but the m-functions here are different

Reflectionless Jacobi Operators

- Now we want J to be reflectionless on $(-2,2)$. The definiton for reflectionless is the same, but the m-functions here are different
- For various reasons, it's necessary that $\|J\| \leq R$ for some $R \geq 2$. Want to study this J now on $\ell^{2}(\mathbb{Z})$.

Reflectionless Jacobi Operators

- Now we want J to be reflectionless on $(-2,2)$. The definiton for reflectionless is the same, but the m-functions here are different
- For various reasons, it's necessary that $\|J\| \leq R$ for some $R \geq 2$. Want to study this J now on $\ell^{2}(\mathbb{Z})$.
- We have a similar \mathcal{M} space like in the continuous case.

Reflectionless Jacobi Operators

- Now we want J to be reflectionless on $(-2,2)$. The definiton for reflectionless is the same, but the m-functions here are different
- For various reasons, it's necessary that $\|J\| \leq R$ for some $R \geq 2$. Want to study this J now on $\ell^{2}(\mathbb{Z})$.
- We have a similar \mathcal{M} space like in the continuous case.
- Let

$$
\mathcal{M}_{R}=\{J: J \text { is reflectionless on }(-2,2) \text { for } R \geq 2\}
$$

m-Functions Again

- For $\lambda \in \mathbb{C}^{+}$, let $u_{ \pm}(n, \lambda)$ be the two solutions to

$$
a_{n} u(n+1, \lambda)+a_{n-1} u(n-1, \lambda)+b_{n} u(n, \lambda)=\lambda u(n, \lambda)
$$

that are square summable near $\pm \infty$ respectively

m-Functions Again

- For $\lambda \in \mathbb{C}^{+}$, let $u_{ \pm}(n, \lambda)$ be the two solutions to

$$
a_{n} u(n+1, \lambda)+a_{n-1} u(n-1, \lambda)+b_{n} u(n, \lambda)=\lambda u(n, \lambda)
$$

that are square summable near $\pm \infty$ respectively

- The fact that $\|J\|<R$ guarantees these are unique solutions up to a factor

m-Functions Again

- For $\lambda \in \mathbb{C}^{+}$, let $u_{ \pm}(n, \lambda)$ be the two solutions to

$$
a_{n} u(n+1, \lambda)+a_{n-1} u(n-1, \lambda)+b_{n} u(n, \lambda)=\lambda u(n, \lambda)
$$

that are square summable near $\pm \infty$ respectively

- The fact that $\|J\|<R$ guarantees these are unique solutions up to a factor
- The m-functions are then defined to be

$$
m_{ \pm}(\lambda)=\mp \frac{u_{ \pm}(1, \lambda)}{a_{0} u_{ \pm}(0, \lambda)}
$$

More Herglotz

- Since J is reflectionless, we again get the function:

More Herglotz

- Since J is reflectionless, we again get the function:

$$
M(\lambda)= \begin{cases}m_{+}(\lambda) \quad \lambda \in \mathbb{C}^{+} \\ -\overline{m_{-}(\bar{\lambda})} & \lambda \in \mathbb{C}^{-}\end{cases}
$$

More Herglotz

- Since J is reflectionless, we again get the function:

$$
M(\lambda)= \begin{cases}m_{+}(\lambda) \quad \lambda \in \mathbb{C}^{+} \\ -\overline{m_{-}(\bar{\lambda})} & \lambda \in \mathbb{C}^{-}\end{cases}
$$

- This $M: \Omega \rightarrow \mathbb{C}^{+}$is again holomophic where now $\Omega=\mathbb{C}^{+} \cup(-2,2) \cup \mathbb{C}^{-}$

More Herglotz

- Since J is reflectionless, we again get the function:

$$
M(\lambda)= \begin{cases}m_{+}(\lambda) & \lambda \in \mathbb{C}^{+} \\ -\overline{m_{-}(\bar{\lambda})} & \lambda \in \mathbb{C}^{-}\end{cases}
$$

- This $M: \Omega \rightarrow \mathbb{C}^{+}$is again holomophic where now $\Omega=\mathbb{C}^{+} \cup(-2,2) \cup \mathbb{C}^{-}$
- Using the conformal map $\varphi: \mathbb{C}^{+} \rightarrow \Omega$ given by $\varphi(\lambda)=-\lambda-\lambda^{-1}$ we get

More Herglotz

- Since J is reflectionless, we again get the function:

$$
M(\lambda)=\left\{\begin{array}{l}
m_{+}(\lambda) \quad \lambda \in \mathbb{C}^{+} \\
-\overline{m_{-}(\bar{\lambda})} \quad \lambda \in \mathbb{C}^{-}
\end{array}\right.
$$

- This $M: \Omega \rightarrow \mathbb{C}^{+}$is again holomophic where now $\Omega=\mathbb{C}^{+} \cup(-2,2) \cup \mathbb{C}^{-}$
- Using the conformal map $\varphi: \mathbb{C}^{+} \rightarrow \Omega$ given by $\varphi(\lambda)=-\lambda-\lambda^{-1}$ we get
- the following Herglotz function $F(\lambda)=M(\varphi(\lambda))$.

More Herglotz

- Since J is reflectionless, we again get the function:

$$
M(\lambda)= \begin{cases}m_{+}(\lambda) & \lambda \in \mathbb{C}^{+} \\ -\overline{m_{-}(\bar{\lambda})} & \lambda \in \mathbb{C}^{-}\end{cases}
$$

- This $M: \Omega \rightarrow \mathbb{C}^{+}$is again holomophic where now $\Omega=\mathbb{C}^{+} \cup(-2,2) \cup \mathbb{C}^{-}$
- Using the conformal map $\varphi: \mathbb{C}^{+} \rightarrow \Omega$ given by $\varphi(\lambda)=-\lambda-\lambda^{-1}$ we get
- the following Herglotz function $F(\lambda)=M(\varphi(\lambda))$.
- It should be noted $\varphi: S^{+} \rightarrow(-2,2), \varphi: \mathbb{D}^{+} \rightarrow \mathbb{C}^{+}$, and $\varphi:\left(\mathbb{D}^{+}\right)^{c} \rightarrow \mathbb{C}^{-}$.

Some Setup

- let r be the solution to $r+1 / r=R$ with $0<r \leq 1$ (Well defined as $R \geq 2$).

Some Setup

- let r be the solution to $r+1 / r=R$ with $0<r \leq 1$ (Well defined as $R \geq 2$).
- Also denote

$$
\sigma_{n}=\int_{\mathbb{R}} t^{n} d \sigma(t)
$$

the moments of the measure σ for $n \in \mathbb{Z}$.

Main Theorem (Discrete Case)

Theorem

$J \in \mathcal{M}_{R}$ iff the associated F-function is of the form

$$
F(\lambda)=-\sigma_{-1}+\left(1-\sigma_{-2}\right) \lambda+\int_{\mathbb{R}} \frac{d \sigma(t)}{t-\lambda}
$$

for some finite Borel measure σ on $(-1 / r,-r) \cup(r, 1 / r)$ such that

$$
1-\sigma_{-2}+\int_{\mathbb{R}} \frac{d \sigma(t)}{t^{2}+c t+1}>0
$$

for all $|c|>R$.

Meaning

- These theorems say if we have L or J, then they determine their respective m-functions and thus their respective F-functions and measures σ

Meaning

- These theorems say if we have L or J, then they determine their respective m-functions and thus their respective F-functions and measures σ
- On the otherhand, if we have a measure σ satisfying the conditions of either theorem, we can define an F-function and thus completely determine a unique L or J.

Meaning

- These theorems say if we have L or J, then they determine their respective m-functions and thus their respective F-functions and measures σ
- On the otherhand, if we have a measure σ satisfying the conditions of either theorem, we can define an F-function and thus completely determine a unique L or J.
- In otherwords, we can uniquely determine an operator of these types knowing only the associated measure satisfying some conditions.

Bibliography

嗇 Hur，I．，McBride，M．and Remling，C．，The Marchenko Representation of Reflectionless Jacobi and Schrödinger Operators．arXiv：1401．7704．Submitted to Trans．AMS．
圊 Marchenko，V．，The Cauchy Problem for the KdV Equation with Non－decreasing Initial Data．What is Integrability？， 273 － 318，Springer，Berlin， 1991.

嗇 Remling，C．，The Absolutely Continuous Spectrum of Jacobi Matrices．Annals of Math．，174，125－171， 2011.

The End

Thank You

