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Two equivalent definitions

I Definition: An operator D is said to be an
unbounded Fredholm operator if D is closed, D has closed
range, dim KerD < ∞ and dim KerD∗ < ∞.

I Definition: A closed operator D is said to be an
unbounded Fredholm operator if there exists a bounded
operator Q such that DQ − I and QD − I are compact.
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Classical Case

I We define the disk as follows:

D = {z ∈ C : |z | ≤ ρ}
∂D = {z ∈ C : |z | = ρ} ' S1

(3.1)

I We define the annulus as follows:

Aρ−,ρ+ = {z ∈ C : 0 < ρ− ≤ |z | ≤ ρ+}
∂Aρ−,ρ+ = {z ∈ C : |z | = ρ±} ' S1 ∪ S1

(3.2)
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Classical Case: Disk and Annulus short exact sequences

I Let D be the following operator:

D =
∂

∂z
(3.3)

defined on C∞ functions

I There are short exact sequences

0 −→ C∞0 (D) −→ C∞(D)
r−→ C∞(∂D) −→ 0

0 −→ C∞0 (Aρ−,ρ+) −→ C∞(Aρ−,ρ+)
r=r−⊕r+−→

r=r−⊕r+−→ C∞(S1)⊕ C∞(S1) −→ 0

(3.4)

I Here r is the restriction to the boundary and
C∞0 (·) = C∞(·) ∩ C0(·).
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Classical Case: APS boundary conditions

I Let πA(I ) be the spectral projection of a self-adjoint operator,
A, onto an interval I . Let

PN = π 1
i

∂
∂ϕ

(−∞,N] N ∈ Z

P±N = π± 1
i

∂
∂ϕ

(−∞,N] N ∈ Z
(3.5)
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Classical Case: Definition of DN and DM,N

I Let DN be the operator D with domain

dom(DN) = {f ∈ C∞(D) ⊂ L2(D) : rf ∈ RanPN} (3.6)

I Let DM,N be the operator D with domain

dom(DM,N) = {f ∈ C∞(Aρ−,ρ+) ⊂ L2(Aρ−,ρ+) :

r+f ∈ RanP+
M , r−f ∈ RanP−N }

(3.7)
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Classical Case: Index theorems

I Theorem
The closure of DN is an unbounded Fredholm operator in L2(D)
and ind(DN) = N + 1.

I Theorem
The closure of DM,N is an unbounded Fredholm operator in
L2(Aρ−,ρ+) and ind(DM,N) = M + N + 1.
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Non-Commutative Case

I Let S = N, or S = Z. We have the following definition:

I Definition: Let {ek}k∈S, be the canonical basis for `2(S), let
{wk} be a bounded sequence of numbers, called weights. The
weighted shift operator in `2(S) is defined by:

Wek = wkek+1 (4.1)

I We also need the shift and diagonal operator defined
respectively

Uek = ek+1

Λek = wkek
(4.2)
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Non-Commutative Case: Conditions on W

I The {wk} are positive.

I The {wk} are increasing.

I S = [W ∗,W ] ≥ 0.

I S defined above is injective.
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Non-Commutative Case: Disk and Cylinder short exact
sequences

I Let C ∗(W ) be the C ∗ − algebra generated by W .

I Let K be the ideal of compact operators.

I

0 −→ K −→ C ∗(W )
r−→ C (S1) −→ 0

0 −→ K −→ C ∗(W )
r=r−⊕r+−→ C (S1)⊕ C (S1) −→ 0

(4.3)

I Here r represents the symbol map, r(I ) = 1 and r(W ) = e iϕ.
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Non-Commutative Case: Definition of D

I Let Pol(W ) be the space of polynomials in W and W ∗.
Pol(W ) ⊂ C ∗(W ).

I Let H = C ∗(W ), 〈·, ·〉S be the Hilbert space completion where
〈a, b〉S = tr(Sba∗) for a, b ∈ C ∗(W ).

I For a ∈ Pol(W ) define

D : Pol(W ) −→ H
Da = S−1[a,W ]

(4.4)
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Non-Commutative Case

I D(W n) = 0

I D(W ∗) = 1

I The above suggests that D looks like ∂
∂z , except for the

non-commutativity.
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I Let PN and P±N be the orthogonal projections in L2.

I Let DN be the operator D with domain

dom(DN) = {a ∈ Pol(W ) : r(a) ∈ RanPN} (4.5)

I Let DM,N be the operator D with domain

dom(DM,N) = {a ∈ Pol(W ) : r+(a) ∈ RanP+
N , r−(a) ∈ RanP−M}

(4.6)
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The End

Thank You

Matt McBride D-bar Operators in Quantum Domains


	Outline
	Two equivalent definitions
	Classical Case: Disk and Annulus
	Quantum(Non-Commutative) Case: Disk and Annulus

