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Operator and Hilbert space

I Let the punctured disk be:

D∗ = {z ∈ C : 0 < |z | ≤ 1} ' R+ × S1

I We define the Dirac type operator

D = −2z
∂

∂z

I and Hilbert space L2(D∗, dµ) where

dµ(z) =
1

2i |z |2
dz ∧ dz
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APS conditions

I Let P≥0 be the othogonal projection onto span {e inϕ}n≥0.
Let z = re iϕ and write f (z) = f (r , ϕ) on D∗.

I APS conditions:

dom(D) =
{
f ∈ L2(D∗, dµ) : Df ∈ L2(D∗, dµ), P≥0f (1, ·) = 0

}
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Dirac operator decomposition

I Using the polar coordinates

D = −r ∂
∂r

+
1

i

∂

∂ϕ

I Along with the projection, f (z) has a Fourier decomposition
and

f (z) =
∑
n∈Z

fn(r)e−inϕ

Df (z) =
∑
n∈Z

(
−rf ′n(r)− nfn(r)

)
e−inϕ
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Operator and Hilbert space I

I Let {ek} be the canonical basis for `2(Z). Uek = ek+1, the
bilateral shift, Kek = kek , the label operator then by the
functional calculus if f : Z→ C, then f (K ) is diagonal and
f (K )ek = f (k)ek .

I Let {w(k)} be a sequence of real numbers:
I

1. w(k) < w(k + 1)

2. lim
k→∞

w(k) =: w+ exists

3. lim
k→−∞

w(k) = 0

4. sup
k

w(k)

w(k − 1)
<∞
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Operator and Hilbert space II

I w : Z→ C gives the diagonal operator w(K ) and
Uwek := Uw(K )ek = w(k)ek+1. Let S := [U∗w ,Uw ] and
tr(S) = w2

+

I Quantum punctured disk is C ∗(Uw ) and

0 −→ K −→ C ∗(Uw )
σ−→ C (S1) −→ 0

I K is ideal of compact operators, σ is the noncommutative
“restriction to the boundary” map.
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Operator and Hilbert space III

I For b ∈ C ∗(Uw ), let τ(b) = tr(S(U∗wUw )−1b) and it is
densely defined on C ∗(Uw )

I The Hilbert space is

H = (C ∗(Uw ), 〈·, ·〉τ = ‖ · ‖2w )

and ‖b‖2w = τ(bb∗)

I The quantum Dirac operator acting in H

Db = −S−1U∗w [b,Uw ]
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APS

I Let P≥0 be the othogonal projection from before

I APS conditions:

dom(D) =
{
b ∈ H : ‖Db‖2w <∞, P≥0σ(b) = 0

}
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Dirac operator decomposition I

I Partial Fourier decomposition H '
⊕

n∈Z `
2
a(Z) and

a(k) := w(k)2/S(k).

I

b =
∑
n∈Z

gn(K ) (U∗)n
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Dirac operator decomposition II

Db =
∑
n>0

A
(n)

gn(K )(U∗)n +
∑
n≤0

A0
(n)

gn(K )(U∗)n

where
A
(n)

g(k) = a(k)(g(k)− c(n)(k)g(k + 1))

and
dom(A) =

{
g ∈ `2a(Z) : ‖Ag‖a <∞

}
.

Additionally consider the operator A0
(n)

which is the operator A
(n)

but with domain

dom(A0
(n)

) = {g ∈ dom(A
(n)

) : g∞ := lim
k→∞

g(k) = 0}.
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Classical Case: Parametrix to the Dirac operator

I The parametrix to the classical Dirac operator: Q = ⊕n∈ZQ
(n)

I

Q(n)gn(r) =


−
∫ r

0

(ρ
r

)n
gn(ρ)

dρ

ρ
n > 0∫ 1

r

(ρ
r

)n
gn(ρ)

dρ

ρ
n ≤ 0
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Non-Commutative Case: Parametrix to the quantum Dirac
operator

I The parametrix to the quantum Dirc operator: Q = ⊕n∈ZQ
(n)

I

Q(n)g(k) = −
∑
l<k

S(l)

w(l)2
g(l) for n = 0

Q(n)g(k) = −
∑
l<k

w(l) · · ·w(l + n − 1)

w(k) · · ·w(k + n − 1)
· S(l)

w(l)2
g(l) for n > 0

Q(n)g(k) =
∑
k≤l

w(k + n) · · ·w(k − 1)

w(l + n) · · ·w(l − 1)
· S(l)

w(l)2
g(l) for n < 0
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Schur-Young Inequality

Lemma
(Schur-Young Inequality) Let T : L2(Y ) −→ L2(X ) be an integral
operator:

Tf (x) =

∫
K (x , y)f (y)dy

Then one has

‖T‖2 ≤
(
sup
x∈X

∫
Y
|K (x , y)|dy

)(
sup
y∈Y

∫
X
|K (x , y)|dx

)
.
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Method of proof: commutative case I

I For n < 0

Q(n)gn(r) =

∫ 1

0
K (r , ρ)gn(ρ)

dρ

ρ

I

K (r , ρ) = χ

(
r

ρ

) (
r

ρ

)|n|
I

χ(t) =

{
1 for t ≤ 1

0 else
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Method of proof: commutative case II

I Using the Schur-Young Inequality

I

‖Q(n)‖ ≤ 1

|n|
I Similarly for n > 0 the above holds. The n = 0 term is

ignored.
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Method of proof: quantum case I

I For n < 0

Q(n)g(k) =
∑
l∈Z

K (l , k)
S(l)

w(l)2
g(l)

I

K (l , k) = χ

(
k

l

)
w(k + n) · · ·w(k − 1)

w(l + n) · · ·w(l − 1)
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Method of proof: noncommutative case II

I Using the Schur-Young Inequality and Riemann sum estimates

I

‖Q(n)‖2a ≤ 2

(
sup

l

w(l)

w(l − 1)

)
<∞

I Similarly for n > 0 the above holds. The n = 0 term is
ignored.
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The End

Thank You
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